Microfluidics and Nanofluidics

, Volume 16, Issue 5, pp 965–987 | Cite as

EWOD microfluidic systems for biomedical applications

  • Hsien-Hua Shen
  • Shih-Kang Fan
  • Chang-Jin Kim
  • Da-Jeng Yao
Research Paper


As the technology advances, a growing number of biomedical microelectromechanical systems (bio-MEMS) research involves development of lab-on-a-chip devices and micrototal analysis systems. For example, a portable instrument capable of biomedical analyses (e.g., blood sample analysis) and immediate recording, whether the patients are in the hospital or home, would be a considerable benefit to human health with an excellent commercial viability. Digital microfluidic (DMF) system based on the electrowetting-on-dielectric (EWOD) mechanism is an especially promising candidate for such point-of-care systems. The EWOD-based DMF system processes droplets in a thin space or on an open surface, unlike the usual microfluidic systems that process liquids by pumping them in microchannels. Droplets can be generated and manipulated on EWOD chip only with electric signals without the use of pumps or valves, simplifying the chip fabrication and the system construction. Microfluidic operations by EWOD actuation feature precise droplet actuation, less contamination risk, reduced reagents volume, better reagents mixing efficiency, shorter reaction time, and flexibility for integration with other elements. In addition, the simplicity and portability make the EWOD-based DMF system widely popular in biomedical or chemical fields as a powerful sample preparation platform. Many chemical and biomedical researches, such as DNA assays, proteomics, cell assays, and immunoassays, have been reported using the technology. In this paper, we have reviewed the recent developments and studies of EWOD-based DMF systems for biomedical applications published mostly during the last 5 years.


Digital microfluidic system Electrowetting-on-dielectric Biomedical application Chemical application Lab-on-a-chip device 


  1. Abdelgawad M, Wheeler AR (2007) Rapid prototyping in copper substrates for digital microfluidics. Adv Mater 19:133CrossRefGoogle Scholar
  2. Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4:349–355CrossRefGoogle Scholar
  3. Abdelgawad M, Freire SLS, Yang H, Wheeler AR (2008) All-terrain droplet actuation. Lab Chip 8:672–677CrossRefGoogle Scholar
  4. Abdelgawad M, Watson MWL, Wheeler AR (2009) Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip 9:1046–1051CrossRefGoogle Scholar
  5. Aijian AP, Chatterjee D, Garrell RL (2012) Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis. Lab Chip 12:2552–2559CrossRefGoogle Scholar
  6. Au SH, Kumar P, Wheeler AR (2011) A new angle on Pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir 27:8586–8594CrossRefGoogle Scholar
  7. Baker CA, Roper MG (2012) Online coupling of digital microfluidic devices with mass spectrometry detection using an eductor with electrospray ionization. Anal Chem 84:2955–2960CrossRefGoogle Scholar
  8. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab Chip 8:519–526CrossRefGoogle Scholar
  9. Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10:1536–1542CrossRefGoogle Scholar
  10. Bartlett JM, Stirling D (2003) A short history of the polymerase chain reaction. Methods Mol Biol 226:3–6Google Scholar
  11. Beni G, Hackwood S (1981) Electro-wetting displays. Appl Phys Lett 38:207–209CrossRefGoogle Scholar
  12. Berge B (1993) Electrocapillarity and wetting of insulator films by water. Comptes Rendus de l’Academie des Sciences Serie II 317:157–163Google Scholar
  13. Boles DJ, Benton JL, Siew GJ, Levy MH, Thwar PK, Sandahl MA et al (2011) Droplet-based pyrosequencing using digital microfluidics. Anal Chem 83:8439–8447CrossRefGoogle Scholar
  14. Chang YH, Lee GB, Huang FC, Chen YY, Lin JL (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225CrossRefGoogle Scholar
  15. Chen C-H, Yao D-J, Tseng S-H, Lu S-W, Chiao C-C, Yeh S-R (2009) Micro-multi-probe electrode array to measure neural signals. Biosens Bioelectron 24:1911–1917CrossRefGoogle Scholar
  16. Chen C-H, Su H-C, Chuang S-C, Yen S-J, Chen Y-C, Lee Y-T, Chen H, Yew T-R, Chang Y-C, Yeh S-R, Yao D-J (2010) Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes. Nanotechnology 21:485501Google Scholar
  17. Chen C-H, Chuang S-C, Su H-C, Hsu W-L, Yew T-R, Chang Y-C et al (2011) A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Lab Chip 11:1647–1655CrossRefGoogle Scholar
  18. Chen YT, Chang WC, Fang WF, Ting SC, Yao DJ, Yang JT (2012) Fission and fusion of droplets in a 3-D crossing microstructure. Microfluid Nanofluid 13:239–247CrossRefGoogle Scholar
  19. Chen C-H, Lin C-T, Hsu W-L, Chang Y-C, Yeh S-R, Li L-J et al (2013) A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomed Nanotechnol Biol Med 9:600–604CrossRefGoogle Scholar
  20. Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRefGoogle Scholar
  21. Cho SK, Zhao YJ, Kim CJ (2007) Concentration and binary separation of micro particles for droplet-based digital microfluidics. Lab Chip 7:490–498CrossRefGoogle Scholar
  22. Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S, Thiele J et al (2013) Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13:4740–4744CrossRefGoogle Scholar
  23. Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 15:427–437CrossRefGoogle Scholar
  24. Davoust L, Fouillet Y, Malk R, Theisen J (2013) Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow patterna. Biomicrofluidics 7:044104Google Scholar
  25. Ding H, Sadeghi S, Shah GJ, Chen S, Keng PY, Kim C-J et al (2012) Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips. Lab Chip 12:3331–3340CrossRefGoogle Scholar
  26. Dryden MDM, Rackus DDG, Shamsi MH, Wheeler AR (2013) Integrated digital microfluidic platform for voltammetric analysis. Anal Chem 85:8809–8816CrossRefGoogle Scholar
  27. Elahi E, Ronaghi M (2004) Pyrosequencing: a tool for DNA sequencing analysis. Methods Mol Biol 255:211–219Google Scholar
  28. Estes MD, Do J, Ahn CH (2009) On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers. Biomed Microdevices 11:509–515CrossRefGoogle Scholar
  29. Eydelnant IA, Uddayasankar U, Li BY, Liao MW, Wheeler AR (2012) Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab Chip 12:750–757CrossRefGoogle Scholar
  30. Fan SK, Huang PW, Wang TT, Peng YH (2008) Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8:1325–1331CrossRefGoogle Scholar
  31. Fan SK, Chiu CP, Lin JW (2009) Electrowetting on polymer dispersed liquid crystal. Appl Phys Lett 94:164109Google Scholar
  32. Fan SK, Yang HP, Hsu WY (2011a) Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules. Lab Chip 11:343–347CrossRefGoogle Scholar
  33. Fan SK, Hsu YW, Chen CH (2011b) Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis. Lab Chip 11:2500–2508CrossRefGoogle Scholar
  34. Folch i Folch A (2013) Introduction to bioMEMS. CRC Press, Boca RatonGoogle Scholar
  35. Gong J, Kim CJ (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906CrossRefGoogle Scholar
  36. Hao H-C, Chang H-Y, Wang T-P, Yao D-J (2013) Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors. J Lab Autom 18:69–76CrossRefGoogle Scholar
  37. Hsien-Hua Shen H-YT, Yao D-J (2013) Single mouse oocyte encapsulated in medium-in-oil microdroplets by using a PDMS microfluidic device. Sens Mater 26:85–94Google Scholar
  38. Hua ZS, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA et al (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316CrossRefGoogle Scholar
  39. Huang HY, Wu TL, Huang HR, Li CJ, Fu HT, Soong YK, Lee MY, Yao DJ (2014) Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel. J Lab Autom 19:91–99Google Scholar
  40. Jebrail MJ, Wheeler AR (2009) Digital microfluidic method for protein extraction by precipitation. Anal Chem 81:330–335CrossRefGoogle Scholar
  41. Jiang X, Jing W, Zheng L, Liu S, Wu W, Sui G (2014) A continuous-flow high-throughput microfluidic device for airborne bacteria PCR detection. Lab on a Chip 14:671–676Google Scholar
  42. Jiangang W, Ruifeng Y, Xuefeng Z, Ming K, Zheyao W, Litian L (2006) An open-configuration electrowetting-based biofluidics actuation for preventing biomolecular adsorption. In: 1st IEEE international conference on nano/micro engineered and molecular systems, 2006. NEMS ‘06, pp 1152–1155Google Scholar
  43. Jones TB, Wang KL, Yao DJ (2004) Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir 20:2813–2818CrossRefGoogle Scholar
  44. Karas M, Bahr U, Dülcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366:669–676CrossRefGoogle Scholar
  45. Kim H, Bartsch MS, Renzi RF, He J, Van de Vreugde JL, Claudnic MR et al (2011) Automated digital microfluidic sample preparation for next-generation DNA sequencing. JALA 16:405–414Google Scholar
  46. Kirby AE, Wheeler AR (2013a) Digital microfluidics: an emerging sample preparation platform for mass spectrometry. Anal Chem 85:6178–6184CrossRefGoogle Scholar
  47. Kirby AE, Wheeler AR (2013b) Microfluidic origami: a new device format for in-line reaction monitoring by nanoelectrospray ionization mass spectrometry. Lab Chip 13:2533–2540CrossRefGoogle Scholar
  48. Kise DP, Magana D, Reddish MJ, Dyer RB (2014) Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection. Lab on a Chip 14:584–591Google Scholar
  49. Koo B, Kim C-J (2013) Evaluation of repeated electrowetting on three different fluoropolymer top coatings. J Micromech Microeng 23:067002Google Scholar
  50. Lapierre F, Piret G, Drobecq H, Melnyk O, Coffinier Y, Thomy V et al (2011) High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 11:1620–1628CrossRefGoogle Scholar
  51. Lee J, Moon H, Fowler J, Chang-Jin K, Schoellhammer T (2001) Addressable micro liquid handling by electric control of surface tension. In: The 14th IEEE international conference on micro electro mechanical systems, 2001. MEMS 2001, pp 499–502Google Scholar
  52. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators, A 95:259–268CrossRefGoogle Scholar
  53. Lin TH, Yao DJ (2012) Applications of EWOD Systems for DNA Reaction and Analysis. J Adhes Sci Technol 26:1789–1804Google Scholar
  54. Lin HC, Liu YJ, Yao DJ (2010) Core-shell droplets for parallel DNA ligation of an ultra-micro volume using an EWOD microfluidic system. JALA 15:210–215Google Scholar
  55. Liu YJ, Yao DJ, Lin HC, Chang WY, Chang HY (2008) DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes. J Micromech Microeng 18:045017Google Scholar
  56. Lo S-J, Yang S-C, Yao D-J, Chen J-H, Tu W-C, Cheng C-M (2013) Molecular-level dengue fever diagnostic devices made out of paper. Lab Chip 13:2686–2692CrossRefGoogle Scholar
  57. Luk VN, Mo GCH, Wheeler AR (2008) Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir 24:6382–6389CrossRefGoogle Scholar
  58. Malic L, Veres T, Tabrizian M (2009) Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens Bioelectron 24:2218–2224CrossRefGoogle Scholar
  59. Miller E, Rotea M, Rothstein JP (2010) Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets. Lab Chip 10:1293–1301CrossRefGoogle Scholar
  60. Miller EM, Ng AHC, Uddayasankar U, Wheeler AR (2011) A digital microfluidic approach to heterogeneous immunoassays. Anal Bioanal Chem 399:337–345CrossRefGoogle Scholar
  61. Moon H, Wheeler AR, Garrell RL, Loo JA, Kim CJ (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6:1213–1219CrossRefGoogle Scholar
  62. Mousa NA, Jebrail MJ, Yang H, Abdelgawad M, Metalnikov P, Chen J, Wheeler AR, Casper RF (2009) Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci Transl Med 1:1ra2Google Scholar
  63. Nelson WC, Kim C-JC (2012) Droplet Actuation by Electrowetting-on-Dielectric (EWOD): a Review. J Adhes Sci Technol 26:1747–1771Google Scholar
  64. Nelson WC, Peng I, Lee GA, Loo JA, Garrell RL, Kim CJ (2010) Incubated protein reduction and digestion on an electrowetting-on-dielectric digital microfluidic chip for MALDI-MS. Anal Chem 82:9932–9937CrossRefGoogle Scholar
  65. Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812CrossRefGoogle Scholar
  66. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726CrossRefGoogle Scholar
  67. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11CrossRefGoogle Scholar
  68. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354CrossRefGoogle Scholar
  69. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448CrossRefGoogle Scholar
  70. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefGoogle Scholar
  71. Schell WA, Benton JL, Smith PB, Poore M, Rouse JL, Boles DJ et al (2012) Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. Eur J Clin Microbiol Infect Dis 31:2237–2245CrossRefGoogle Scholar
  72. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75:016601CrossRefGoogle Scholar
  73. Shah GJ, Ohta AT, Chiou EPY, Wu MC, Kim CJ (2009) EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9:1732–1739CrossRefGoogle Scholar
  74. Shah GJ, Veale JL, Korin Y, Reed EF, Gritsch HA, Kim CJ (2010) Specific binding and magnetic concentration of CD8+ T-lymphocytes on electrowetting-on-dielectric platform. Biomicrofluidics 4:44106Google Scholar
  75. Shah GJ, Ding H, Sadeghi S, Chen S, Kim C-J CJ, van Dam RM (2013) On-demand droplet loading for automated organic chemistry on digital microfluidics. Lab Chip 13:2785–2795CrossRefGoogle Scholar
  76. ShaoNing P, Yi-Lun W, Chih-Ting L, Wu MC (2013) Isothermal real-time polymerase chain reaction detection of herpes simplex virus type 1 on a light-actuated digital microfluidics platform. In: The 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII, pp 2791–2794Google Scholar
  77. Shen H-H, Su T-Y, Liu Y-J, Chang H-Y, Yao D-J (2013) Single-nucleotide polymorphism detection based on a temperature-controllable electrowetting on dielectrics digital microfluidic system. Sens Mater 25:643–651Google Scholar
  78. Shen HH, Su TY, Liu YJ, Yao DJ (2013b) SNP detection based on a temperature–controllable EWOD digital microfluidic system. Sens MaterGoogle Scholar
  79. Shih SC, Yang H, Jebrail MJ, Fobel R, McIntosh N, Al-Dirbashi OY et al (2012) Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal Chem 84:3731–3738CrossRefGoogle Scholar
  80. Sista R, Hua ZS, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A et al (2008a) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104CrossRefGoogle Scholar
  81. Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008b) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196CrossRefGoogle Scholar
  82. Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR (2012) A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12:369–375CrossRefGoogle Scholar
  83. Tang KT, Yao DJ, Yang CM, Hao HC, Chao JS, Li CH, Gu PS (2009) A portable electronic nose based on bio-chemical surface acoustic wave (SAW) array with multiplexed oscillator and readout electronics. AIP Conference proceedings, vol 1137, pp 86–89Google Scholar
  84. Tao X, Chakrabarty K, Pamula VK (2010) Defect-tolerant design and optimization of a digital microfluidic biochip for protein crystallization. IEEE Trans Comput Aided Des Integr Circuits Syst 29:552–565CrossRefGoogle Scholar
  85. Tran TM, Lan F, Thompson CS, Abate AR (2013) From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology. J Phys D-Appl Phys 46:114004CrossRefGoogle Scholar
  86. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626CrossRefGoogle Scholar
  87. Walch A, Rauser S, Deininger S-O, Hoefler H (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 130:421–434CrossRefGoogle Scholar
  88. Watson MW, Abdelgawad M, Ye G, Yonson N, Trottier J, Wheeler AR (2006) Microcontact printing-based fabrication of digital microfluidic devices. Anal Chem 78:7877–7885CrossRefGoogle Scholar
  89. Welch ERF, Lin YY, Madison A, Fair RB (2011) Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol J 6:165–176Google Scholar
  90. Wheeler AR, Moon H, Kim CJ, Loo JA, Garrell RL (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76:4833–4838CrossRefGoogle Scholar
  91. Wheeler AR, Moon H, Bird CA, Loo RRO, Kim CJ, Loo JA et al (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540CrossRefGoogle Scholar
  92. Wijethunga PAL, Nanayakkara YS, Kunchala P, Armstrong DW, Moon H (2011) On-chip drop-to-drop liquid microextraction coupled with real-time concentration monitoring technique. Anal Chem 83:1658–1664CrossRefGoogle Scholar
  93. Witters D, Vergauwe N, Vermeir S, Ceyssens F, Liekens S, Puers R et al (2011) Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. Lab Chip 11:2790–2794CrossRefGoogle Scholar
  94. Witters D, Vergauwe N, Ameloot R, Vermeir S, De Vos D, Puers R et al (2012) Digital microfluidic high-throughput printing of single metal-organic framework crystals. Adv Mater 24:1316–1320CrossRefGoogle Scholar
  95. Witters D, Knez K, Ceyssens F, Puers R, Lammertyn J (2013) Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13:2047–2054CrossRefGoogle Scholar
  96. Wulff-Burchfield E, Schell WA, Eckhardt AE, Pollack MG, Hua Z, Rouse JL et al (2010) Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagn Microbiol Infect Dis 67:22–29CrossRefGoogle Scholar
  97. Yang H, Luk VN, Abelgawad M, Barbulovic-Nad I, Wheeler AR (2009) A world-to-chip interface for digital microfluidics. Anal Chem 81:1061–1067CrossRefGoogle Scholar
  98. Yang H, Mudrik JM, Jebrail MJ, Wheeler AR (2011) A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction. Anal Chem 83:3824–3830CrossRefGoogle Scholar
  99. Yi UC, Kim CJ (2006) Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J Micromech Microeng 16:2053–2059CrossRefGoogle Scholar
  100. Yu YH, Chen JF, Li J, Yang S, Fan SK, Zhou J (2013) Microfabrication of a digital microfluidic platform integrated with an on-chip electrochemical cell. J Micromech Microeng 23:095025Google Scholar
  101. Zhou G, Kamahori M, Okano K, Harada K, Kambara H (2001) Miniaturized pyrosequencer for DNA analysis with capillaries to deliver deoxynucleotides. Electrophoresis 22:3497–3504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hsien-Hua Shen
    • 1
  • Shih-Kang Fan
    • 2
  • Chang-Jin Kim
    • 3
  • Da-Jeng Yao
    • 1
  1. 1.Institute of NanoEngineering and MicroSystemsNational Tsing Hua UniversityHsinchuTaiwan, ROC
  2. 2.Department of Mechanical EngineeringNational Taiwan UniversityHsinchuTaiwan, ROC
  3. 3.Department of Aerospace and Mechanical EngineeringUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations