Microfluidics and Nanofluidics

, Volume 17, Issue 5, pp 781–807 | Cite as

Electrochemical detection techniques in micro- and nanofluidic devices

  • Aytug Gencoglu
  • Adrienne R. Minerick


Electrochemical techniques are widely used in microfluidic and nanofluidic devices because they are suitable for miniaturization, have better sensitivity compared to optical detection techniques, and their components can be reliably microfabricated. In addition to the detection and quantification of analytes, electrochemical techniques can be used to monitor processes such as biological cell death and protein/DNA separations/purifications. Such techniques are combined with micro- and nanofluidic devices with point-of-care (POC) applications in mind, where cost, footprint, ease of use, and independence from peripheral equipment are critical for a viable design. A large variety of electrode materials and device configurations have been employed to meet these requirements. This review introduces the reader to the major electrochemical techniques, materials, and fabrication methods for working and reference electrodes, and to surface modifications of electrodes to facilitate electrochemical measurements, in the context of micro- and nanofluidic devices. The continuing development of these techniques holds promise for the next-generation lab-on-a-chip devices, which can realize the goals of this technology such as POC clinical analysis.


Electrochemistry Working electrode Reference electrode Lab-on-a-chip devices Electrochemical detection 



Amperometric detection


Boron-doped diamond




Conductivity-based detection


Capillary electrophoresis–amperometric detection


Counter electrode


Complementary metal–oxide–semiconductor


Carbon nanotube


Circulating tumor cell


Cyclic voltammetry


Dielectrophoretic impedance measurement


Electrochemical correlation spectroscopy


Electrochemical impedance spectroscopy


Enzyme-linked immunosorbent assay


Enhanced surface plasmon resonance


Focused ion beam


Fast scan cyclic voltammetry


Indium tin oxide


Laser-induced fluorescence


Limit of detection


Linear scan voltammetry


Pulsed amperometric detection


Printed circuit board


Polymerase chain reaction


Point of care


Self-assembled monolayer


Scanning electrochemical microscopy


Surface plasmon resonance


Stripping voltammetry


Square wave voltammetry



The authors would like to acknowledge the financial support by NSF, provided through CBET 0636254, “SGER: Exploration and Quantification of Ion Gradients in a Capillary Microdevice” and valuable instruction and discussions with David O.Wipf.

Conflict of interest

The authors declare no conflict of interest.


  1. Abad-Villar EM, Tanyanyiwa J, Fernandez-Abedul MT, Costa-Garcia A, Hauser PC (2004) Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements. Anal Chem 76(5):1282–1288. doi: 10.1021/ac0346656 Google Scholar
  2. Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4(4):349–355. doi: 10.1007/s10404-007-0190-3 Google Scholar
  3. Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Gottert J, McCarley RL, Nikitopoulos D, Murphy MC, Soper SA (2008) Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc 130(27):8633–8641. doi: 10.1021/ja8015022 Google Scholar
  4. Ahmadi AG, Peng ZC, Hesketh PJ, Nair S (2010) Wafer-scale process for fabricating arrays of nanopore devices. J Micro Nanolithogr MEMS MOEMS 9(3):8. doi: 10.1117/1.3486202 Google Scholar
  5. Altinier S, Zaninotto M, Mion M, Carraro P, Rocco S, Tosato F, Plebani M (2001) Point-of-care testing of cardiac markers: results from an experience in an emergency department. Clin Chim Acta 311(1):67–72. doi: 10.1016/s0009-8981(01)00562-9 Google Scholar
  6. Amatore C, Pebay C, Thouin L, Wang AF (2009) Cyclic voltammetry at microelectrodes: influence of natural convection on diffusion layers as characterized by in situ mapping of concentration profiles. Electrochem Commun 11(6):1269–1272. doi: 10.1016/j.elecom.2009.04.018 Google Scholar
  7. Ang PK, Li A, Jaiswal M, Wang Y, Hou HW, Thong JTL, Lim CT, Loh KP (2011) Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett 11(12):5240–5246. doi: 10.1021/nl202579k Google Scholar
  8. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52Google Scholar
  9. Balslev S, Jorgensen AM, Bilenberg B, Mogensen KB, Snakenborg D, Geschke O, Kutter JP, Kristensen A (2006) Lab-on-a-chip with integrated optical transducers. Lab Chip 6(2):213–217. doi: 10.1039/b512546d Google Scholar
  10. Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20(12):2488–2503. doi: 10.1016/j.bios.2004.10.016 Google Scholar
  11. Bani-Yaseen AAD (2009) Fabrication and characterization of fully integrated microfluidic device with carbon sensing electrode for the analysis of selected biomedical targets. IEEE Sens J 9(1–2):81–86. doi: 10.1109/jsen.2008.2011074 Google Scholar
  12. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  13. Barton AC, Davis F, Higson SPJ (2008) Labeless immunosensor assay for the stroke marker protein neuron specific enolase based upon an alternating current impedance protocol. Anal Chem 80(24):9411–9416. doi: 10.1021/ac801394d Google Scholar
  14. Belmont C, Tercier ML, Buffle J, Fiaccabrino GC, KoudelkaHep M (1996) Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability. Anal Chim Acta 329(3):203–214. doi: 10.1016/0003-2670(96)00116-x Google Scholar
  15. Benjamin H, Bhansali S, Hoath SB, Pickens WL, Smallwood R (2005) A planar micro-sensor for bio-impedance measurements. Sens Actuators B Chem 111:430–435. doi: 10.1016/j.snb.2005.03.075 Google Scholar
  16. Brett CMA, Inzelt G, Kertesz V (1999) Poly(methylene blue) modified electrode sensor for haemoglobin. Anal Chim Acta 385(1–3):119–123. doi: 10.1016/s0003-2670(98)00808-3 Google Scholar
  17. Brown ER, Sandifer JR (1986) Cyclic voltammetry, AC polarography, and related techniques. In: Rossiter BW, Hamilton JF (eds) Electrochemical methods, vol 2. Physical methods of chemistry, 2nd edn. Wiley, HobokenGoogle Scholar
  18. Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford, UKGoogle Scholar
  19. Bunyakul N, Edwards KA, Promptmas C, Baeumner AJ (2009) Cholera toxin subunit B detection in microfluidic devices. Anal Bioanal Chem 393(1):177–186. doi: 10.1007/s00216-008-2364-6 Google Scholar
  20. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095. doi: 10.1021/ac901071p Google Scholar
  21. Carvalhal RF, Kfouri MS, Piazetta MHD, Gobbi AL, Kubota LT (2010) Electrochemical detection in a paper-based separation device. Anal Chem 82(3):1162–1165. doi: 10.1021/ac902647r Google Scholar
  22. Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2006) Amperometric detector designs for capillary electrophoresis microchips. J Chromatogr A 1109(2):291–299. doi: 10.1016/j.chroma.2006.01.029 Google Scholar
  23. Castano-Alvarez M, Teresa Fernandez-Abedul M, Costa-Garcia A (2007) Electroactive intercalators for DNA analysis on microchip electrophoresis. Electrophoresis 28(24):4679–4689. doi: 10.1002/elps.200700160 Google Scholar
  24. Chainani ET, Ngo KT, Scheeline A (2013) Electrochemistry in an acoustically levitated drop. Anal Chem 85:2500–2506. doi: 10.1021/ac3035162 Google Scholar
  25. Chang C-P, Nagel DJ, Velasquez MT, Zaghloul ME (2011) Compact optical microfluidic uric acid analysis system. Biosens Bioelectron 26(10):4155–4161. doi: 10.1016/j.bios.2011.04.013 Google Scholar
  26. Chikkaveeraiah BV, Liu H, Mani V, Papadimitrakopoulos F, Rusling JF (2009) A microfluidic electrochemical device for high sensitivity biosensing: detection of nanomolar hydrogen peroxide. Electrochem Commun 11:819–822Google Scholar
  27. Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF (2011) Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron 26(11):4477–4483. doi: 10.1016/j.bios.2011.05.005 Google Scholar
  28. Choi S, Goryll M, Sin LYM, Wong PK, Chae J (2011) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid Nanofluid 10(2):231–247. doi: 10.1007/s10404-010-0638-8 Google Scholar
  29. Choi H, Kim KB, Jeon CS, Hwang I, Lee S, Kim HK, Kim HC, Chung TD (2013) A label-free DC impedance-based microcytometer for circulating rare cancer cell counting. Lab Chip 13:970–977. doi: 10.1039/c2lc41376k Google Scholar
  30. Chu Q, Jiang L, An X, Ye J (2008) Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Anal Chim Acta 606(2):246–251. doi: 10.1016/j.aca.2007.11.015 Google Scholar
  31. Chua CK, Pumera M (2013) Chemically modified graphenes as detectors in lab-on-chip device. Electroanalysis 25(4):945–950. doi: 10.1002/elan.201200583 Google Scholar
  32. Chua CK, Ambrosi A, Pumera M (2011) Graphene based nanomaterials as electrochemical detectors in lab-on-a-chip devices. Electrochem Commun 13(5):517–519. doi: 10.1016/j.elecom.2011.03.001 Google Scholar
  33. Chuang K-C, Fan S-K (2006) Direct handwriting manipulation of droplets by self-aligned mirror-EWOD across a dielectric sheet. Paper presented at the 19th IEEE international conference on micro electro mechanical systems, Istanbul, TurkeyGoogle Scholar
  34. Connelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 402(1):117–127. doi: 10.1007/s00216-011-5407-3 Google Scholar
  35. Corbo D, Bertotti M (2002) Use of a copper electrode in alkaline medium as an amperometric sensor for sulphite in a flow-through configuration. Anal Bioanal Chem 374(3):416–420. doi: 10.1007/s00216-002-1504-7 Google Scholar
  36. Cortes-Salazar F, Lesch A, Momotenko D, Busnel JM, Wittstock G, Girault HH (2010) Fountain pen for scanning electrochemical microscopy. Anal Methods 2(7):817–823. doi: 10.1039/c0ay00096e Google Scholar
  37. Cui G, Lee JS, Kim SJ, Nam H, Cha GS, Kim HD (1998) Potentiometric pCO(2) sensor using polyaniline-coated pH-sensitive electrodes. Analyst 123(9):1855–1859. doi: 10.1039/a802872i Google Scholar
  38. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292. doi: 10.1126/science.1062711 Google Scholar
  39. Dahlin AB, Dielacher B, Rajendran P, Sugihara K, Sannomiya T, Zenobi-Wong M, Voros J (2012) Electrochemical plasmonic sensors. Anal Bioanal Chem 402(5):1773–1784. doi: 10.1007/s00216-011-5404-6 Google Scholar
  40. Dam VAT, Olthuis W, van den Berg A (2007) Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species. Analyst 132(4):365–370. doi: 10.1039/b616667a Google Scholar
  41. Daniel D, Gutz IGR (2003) Quick production of gold electrode sets or arrays and of microfluidic flow cells based on heat transfer of laser printed toner masks onto compact discs. Electrochem Commun 5(9):782–786. doi: 10.1016/j.elecom.2003.07.004 Google Scholar
  42. Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257. doi: 10.1002/elan.200603855 Google Scholar
  43. Dawoud AA, Kawaguchi T, Jankowiak R (2007a) In-channel modification of electrochemical detector for the detection of bio-targets on microchip. Electrochem Commun 9(7):1536–1541. doi: 10.1016/j.elecom.2007.02.016 Google Scholar
  44. Dawoud AA, Kawaguchi T, Jankowiak R (2007b) Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct. Anal Bioanal Chem 388(1):245–252. doi: 10.1007/s00216-007-1203-5 Google Scholar
  45. Defever T, Druet M, Rochelet-Dequaire M, Joannes M, Grossiord C, Limoges B, Marchal D (2009) Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis. J Am Chem Soc 131(32):11433–11441. doi: 10.1021/ja901368m Google Scholar
  46. Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 107(37):16060–16065. doi: 10.1073/pnas.1001831107 Google Scholar
  47. Dharmasiri U, Njoroge SK, Witek MA, Adebiyi MG, Kamande JW, Hupert ML, Barany F, Soper SA (2011) High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem 83(6):2301–2309. doi: 10.1021/ac103172y Google Scholar
  48. Dorris MK, Crick EW, Lunte CE (2012) A parallel dual-electrode detector for capillary electrophoresis. Electrophoresis 33(17):2725–2732. doi: 10.1002/elps.201200113 Google Scholar
  49. Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, Bontempelli G (2012) An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 12(1):153–158Google Scholar
  50. Du Y, Chen C, Zhou M, Dong S, Wang E (2011) Microfluidic electrochemical aptameric assay integrated on-chip: a potentially convenient sensing platform for the amplified and multiplex analysis of small molecules. Anal Chem 83(5):1523–1529. doi: 10.1021/ac101988n Google Scholar
  51. Dumitrescu I, Yancey DF, Crooks RM (2012) Dual-electrode microfluidic cell for characterizing electrocatalysts. Lab Chip 12(5):986–993. doi: 10.1039/c2lc21181e Google Scholar
  52. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826Google Scholar
  53. El-Said WA, Yea C-H, Kim H, Oh B-K, Choi J-W (2009) Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry. Biosens Bioelectron 24(5):1259–1265. doi: 10.1016/j.bios.2008.07.037 Google Scholar
  54. Erickson D, Li DQ (2004) Integrated microfluidic devices. Anal Chim Acta 507(1):11–26. doi: 10.1016/j.aca.2003.09.019 Google Scholar
  55. Erlandsson PG, Robinson ND (2011) Electrolysis-reducing electrodes for electrokinetic devices. Electrophoresis 32(6–7):784–790. doi: 10.1002/elps.201000617 Google Scholar
  56. Ertl P, Emrich CA, Singhal P, Mathies RA (2004) Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. Anal Chem 76(13):3749–3755. doi: 10.1021/ac035282a Google Scholar
  57. Evander M, Ricco AJ, Morser J, Kovacs GTA, Leung LLK, Giovangrandi L (2013) Microfluidic impedance cytometer for platelet analysis. Lab Chip 13(4):722–729. doi: 10.1039/c2lc40896a Google Scholar
  58. Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18. doi: 10.1016/j.bios.2012.11.033 Google Scholar
  59. Fang TH, Ramalingam N, Dong X-D, Ngin TS, Zeng X, Kuan ATL, Huat EYP, Gong H-Q (2009) Real-time PCR microfluidic devices with concurrent electrochemical detection. Biosens Bioelectron 24(7):2131–2136. doi: 10.1016/j.bios.2008.11.009 Google Scholar
  60. Fernandez-la-Villa A, Sanchez-Barragan D, Pozo-Ayuso DF, Castano-Alvarez M (2012) Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection. Electrophoresis 33(17):2733–2742. doi: 10.1002/elps.201200236 Google Scholar
  61. Fischer DJ, Hulvey MK, Regel AR, Lunte SM (2009) Amperometric detection in microchip electrophoresis devices: effect of electrode material and alignment on analytical performance. Electrophoresis 30(19):3324–3333. doi: 10.1002/elps.200900317 Google Scholar
  62. Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li JL (2005) Detecting single stranded DNA with a solid state nanopore. Nano Lett 5(10):1905–1909. doi: 10.1021/nl051199m Google Scholar
  63. Forry SP, Murray JR, Heien MLAV, Locascio LE, Wightman RM (2004) Probing electric fields inside microfluidic channels during electroosmotic flow with fast-scan cyclic voltammetry. Anal Chem 76(17):4945–4950Google Scholar
  64. Fosdick SE, Berglund SP, Mullins CB, Crooks RM (2013) Parallel screening of electrocatalyst candidates using bipolar electrochemistry. Anal Chem 85:2493–2499. doi: 10.1021/ac303581b Google Scholar
  65. Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt JT (2011) Perspective on diagnostics for global health. IEEE Pulse 2(6):40–50Google Scholar
  66. Gamboa JCM, Pena RC, Paixao TRLC, Bertotti M (2009) A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 80(2):581–585. doi: 10.1016/j.talanta.2009.07.028 Google Scholar
  67. Garcia CD, Henry CS (2003) Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. Anal Chem 75(18):4778–4783. doi: 10.1021/ac034440v Google Scholar
  68. Gebala M, Stoica L, Neugebauer S, Schuhmann W (2009) Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis 21(3–5):325–331. doi: 10.1002/elan.200804388 Google Scholar
  69. Gencoglu A, Camacho-Alanis F, Nguyen VT, Nakano A, Ros A, Minerick AR (2011) Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules. Electrophoresis 32(18):2436–2447. doi: 10.1002/elps.201100090 Google Scholar
  70. Ghanim MH, Abdullah MZ (2011) Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: recent developments. Talanta 85(1):28–34. doi: 10.1016/j.talanta.2011.04.069 Google Scholar
  71. Goluch ED, Wolfrum B, Singh PS, Zevenbergen MAG, Lemay SG (2009) Redox cycling in nanofluidic channels using interdigitated electrodes. Anal Bioanal Chem 394(2):447–456. doi: 10.1007/s00216-008-2575-x Google Scholar
  72. Gomez R, Bashir R, Sarikaya A, Ladisch MR, Sturgis J, Robinson JP, Geng T, Bhunia AK, Apple HL, Wereley S (2001) Microfluidic biochip for impedance spectroscopy of biological species. Biomed Microdevices 3(3). doi: 10.1023/a:1011403112850
  73. Gonzalez CF, Cropek DM, Henry CS (2009) Photopatternable carbon electrodes for chip-based electrochemical detection. Electroanalysis 21(19):2171–2174. doi: 10.1002/elan.200904643 Google Scholar
  74. Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400–1458. doi: 10.3390/s8031400 Google Scholar
  75. Guan JG, Miao YQ, Zhang QJ (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226. doi: 10.1016/s1389-1723(04)70195-4 Google Scholar
  76. Guan WJ, Li Y, Chen YQ, Zhang XB, Hu GQ (2005) Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens Bioelectron 21(3):508–512. doi: 10.1016/j.bios.2004.10.030 Google Scholar
  77. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515. doi: 10.1021/ac2030199 Google Scholar
  78. Guijt RM, Baltussen E, van der Steen G, Frank H, Billiet H, Schalkhammer T, Laugere F, Vellekoop M, Berthold A, Sarro L, van Dedem GWK (2001) Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis 22(12):2537–2541. doi: 10.1002/1522-2683(200107)22:12<2537:aid-elps2537>;2-c Google Scholar
  79. Ha K, Joo G-s, Jha SK, Kim Y-S (2009) Monitoring of endocrine disruptors by capillary electrophoresis amperometric detector. Microelectron Eng 86(4–6):1407–1410. doi: 10.1016/j.mee.2009.02.025 Google Scholar
  80. Hao Z, Chen H, Zhu X, Li J, Liu C (2008) Modification of amorphous poly(ethylene terephthalate) surface by UV light and plasma for fabrication of an electrophoresis chip with an integrated gold microelectrode. J Chromatogr A 1209(1–2):246–252. doi: 10.1016/j.chroma.2008.08.088 Google Scholar
  81. Hao Z, Chen H, Ma D (2009) Preparation of micro gold devices on poly(dimethylsiloxane) chips with region-selective electroless plating. Anal Chem 81(20):8649–8653. doi: 10.1021/ac901539n Google Scholar
  82. Harrell CC, Choi Y, Horne LP, Baker LA, Siwy ZS, Martin CR (2006) Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22(25):10837–10843. doi: 10.1021/la061234k Google Scholar
  83. He RX, Lin P, Liu ZK, Zhu HW, Zhao XZ, Chan HLW, Yan F (2012) Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett 12(3):1404–1409. doi: 10.1021/nl2040805 Google Scholar
  84. He P, Oncescu V, Lee S, Choi I, Erickson D (2013) Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Anal Chim Acta 759:74–80. doi: 10.1016/j.aca.2012.10.038 Google Scholar
  85. Hebert NE, Snyder B, McCreery RL, Kuhr WG, Brazill SA (2003) Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal Chem 75(16):4265–4271. doi: 10.1021/ac026425g Google Scholar
  86. Heikali D, Di Carlo D (2010) A niche for microfluidics in portable hematology analyzers. JALA 15(4):319–328. doi: 10.1016/j.jala.2010.02.005 Google Scholar
  87. Heldt CL, Sieloff AK, Merillat JP, Minerick AR, King JA, Perger WF, Fukushima H, Narendra J (2013) Stacked graphene nanoplatelet paper sensor for protein detection. Sens Actuators B Chem 181(0):92–98. doi: 10.1016/j.snb.2013.01.041 Google Scholar
  88. Henry CS, Fritsch I (1998) Microfabricated recessed microdisk electrodes: characterization in static and convective solutions. Anal Chem 71(3):550–556. doi: 10.1021/ac980375r Google Scholar
  89. Heyderman LJ, Ketterer B, Bachle D, Glaus F, Haas B, Schift H, Vogelsang K, Gobrecht J, Tiefenauer L, Dubochet O, Surbled P, Hessler T (2003) High volume fabrication of customised nanopore membrane chips. Microelectron Eng 67–8:208–213. doi: 10.1016/s0167-9317(03)00073-x Google Scholar
  90. Ho J-R, Shih T-K, Cheng JWJ, Sung C-K, Chen C-F (2007) A novel method for fabrication of self-aligned double microlens arrays. Sens Actuators A Phys 135(2):465–471. doi: 10.1016/j.sna.2006.09.007 Google Scholar
  91. Hu L, Huo K, Chen R, Gai B, Fu J, Chu PK (2011) Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. Anal Chem 83:8138–8144Google Scholar
  92. Hu CG, Bai XY, Wang YK, Jin W, Zhang X, Hu SS (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84(8):3745–3750. doi: 10.1021/ac3003243 Google Scholar
  93. Huang Y, Mason AJ (2013) Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19):3929–3934. doi: 10.1039/c3lc50437a Google Scholar
  94. Huang X, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem 60(17):1837–1838. doi: 10.1021/ac00168a040 Google Scholar
  95. Huang WH, Cheng W, Zhang Z, Pang DW, Wang ZL, Cheng JK, Cui DF (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem 76(2):483–488. doi: 10.1021/ac035026y Google Scholar
  96. Hwang S, La Fratta CN, Agarwal V, Yu X, Walt DR, Sonkusale S (2009) CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sens J 9:609–615Google Scholar
  97. Inczèdy J, Lengyel T, Ure A, Gelencsér A, Hulanicki A (1998) Compendium of analytical nomenclature IUPAC, 3rd edn. Blackwell Science, OxfordGoogle Scholar
  98. Inoue K, Ferrante P, Hirano Y, Yasukawa T, Shiku H, Matsue T (2007) A competitive immunochromatographic assay for testosterone based on electrochemical detection. Talanta 73(5):886–892. doi: 10.1016/j.talanta.2007.05.008 Google Scholar
  99. Irawan R, Tjin SC, Fang X, Fu CY (2007) Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomed Microdevices 9(3):413–419. doi: 10.1007/s10544-007-9052-8 Google Scholar
  100. Ito T, Hosokawa K, Maeda M (2007) Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosens Bioelectron 22(8):1816–1819. doi: 10.1016/j.bios.2006.08.008 Google Scholar
  101. Ivanov I, Stojcic J, Stanimirovic A, Sargent E, Nam RK, Kelley SO (2013) Chip-based nanostructured sensors enable accurate identification and classification of circulating tumor cells in prostate cancer patient blood samples. Anal Chem 85(1):398–403. doi: 10.1021/ac3029739 Google Scholar
  102. Jackson DJ, Naber JF, Roussel TJ, Crain MM, Walsh KM, Keynton RS, Baldwin RP (2003) Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. Anal Chem 75(14):3643–3649. doi: 10.1021/ac0206622 Google Scholar
  103. Janin M, Ghilane J, Randriamahazaka H, Lacroix J-C (2011) Electrochemical fabrication of highly stable redox-active nanojunctions. Anal Chem 83:9709–9714Google Scholar
  104. Jha SK, Ra G-S, Joo G-S, Kim Y-S (2009) Electrochemical cell lysis on a miniaturized flow-through device. Curr Appl Phys 9(4):E301–E303. doi: 10.1016/j.cap.2009.06.035 Google Scholar
  105. Kaetelhoen E, Hofmann B, Lemay SG, Zevenbergen MAG, Offenhaeusser A, Wolfrum B (2010) Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients. Anal Chem 82(20):8502–8509. doi: 10.1021/ac101387f Google Scholar
  106. Kafka J, Panke O, Abendroth B, Lisdat F (2008) A label-free DNA sensor based on impedance spectroscopy. Electrochim Acta 53(25):7467–7474. doi: 10.1016/j.electacta.2008.01.031 Google Scholar
  107. Kahlert H (2010) Reference electrodes. In: Scholz F (ed) Electroanalytical methods: guide to experiments and applications. Springer, HeidelbergGoogle Scholar
  108. Kasem KK, Jones S (2008) Platinum as a reference electrode in electrochemical measurements. Platin Met Rev 52(2):100–106. doi: 10.1595/147106708x297855 Google Scholar
  109. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res 27(24):4830–4837. doi: 10.1093/nar/27.24.4830 Google Scholar
  110. Kikura-Hanajiri R, Martin RS, Lunte SM (2002) Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Anal Chem 74(24):6370–6377. doi: 10.1021/ac0204000 Google Scholar
  111. Kim J, Kim E-G, Bae S, Kwon S, Chun H (2013) Potentiometric multichannel cytometer microchip for high-throughput microdispersion analysis. Anal Chem 85:362–368. doi: 10.1021/ac302905x Google Scholar
  112. Kissinger PT, Ridgway TH (1996) Small-amplitude controlled-potential techniques. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  113. Klett O, Bjorefors F, Nyholm L (2001) Elimination of nigh-voltage field effects in end column electrochemical detection in capillary electrophoresis by use of on-chip microband electrodes. Anal Chem 73(8):1909–1915. doi: 10.1021/ac0012288 Google Scholar
  114. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625. doi: 10.1126/science.287.5453.622 Google Scholar
  115. Kong J, Chapline MG, Dai HJ (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13(18):1384–1386. doi: 10.1002/1521-4095(200109)13:18<1384:aid-adma1384>;2-8 Google Scholar
  116. Kong Y, Chen H, Wang Y, Soper SA (2006) Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating. Electrophoresis 27(14):2940–2950. doi: 10.1002/elps.200500750 Google Scholar
  117. Kounaves SP, Deng W, Hallock PR, Kovacs GTA, Storment CW (1994) Iridium-based ultramicroelectrode array fabricated by microlithography. Anal Chem 66(3):418–423. doi: 10.1021/ac00075a017 Google Scholar
  118. Kovarik ML, Torrence NJ, Spence DM, Martin RS (2004) Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses. Analyst 129(5):400–405. doi: 10.1039/b401380h Google Scholar
  119. Kowalczyk SW, Tuijtel MW, Donkers SP, Dekker C (2010) Unraveling single-stranded DNA in a solid-state nanopore. Nano Lett 10(4):1414–1420. doi: 10.1021/nl100271c Google Scholar
  120. Koydemir HC, Kulah H, Ozgen C, Alp A, Hascelik G (2011) MEMS biosensors for detection of methicillin resistant Staphylococcus aureus. Biosens Bioelectron 29(1):1–12. doi: 10.1016/j.bios.2011.07.071 Google Scholar
  121. Kulesza PJ, Miecznikowski K, Malik MA, Galkowski M, Chojak M, Caban K, Wieckowski A (2001) Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer. Electrochim Acta 46(26–27):4065–4073. doi: 10.1016/s0013-4686(01)00687-9 Google Scholar
  122. Kuo-Hoong L, Yuan-Deng S, Shean-Jen C, Fan-Gang T, Gwo-Bin L (2007) Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron 23 (4). doi: 10.1016/j.bios.2007.05.007
  123. Kuswandi B, Nuriman N, Huskens J, Verboom W (2007) Optical sensing systems for microfluidic devices: a review. Anal Chim Acta 601(2):141–155. doi: 10.1016/j.aca.2007.08.046 Google Scholar
  124. Kwakye S, Goral VN, Baeumner AJ (2006) Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat. Biosens Bioelectron 21(12):2217–2223. doi: 10.1016/j.bios.2005.11.017 Google Scholar
  125. Lee YH, Maus RG, Smith BW, Winefordner JD (1994) Laser-induced fluorescence detection of a single-molecule in a capillary. Anal Chem 66(23):4142–4149. doi: 10.1021/ac00095a005 Google Scholar
  126. Lee JA, Hwang S, Kwak J, Park SI, Lee SS, Lee K-C (2008) An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sens Actuators B Chem 129(1):372–379. doi: 10.1016/j.snb.2007.08.034 Google Scholar
  127. Lee K-S, Park S-H, Won S-Y, Shim Y-B (2009) Electrophoretic total analysis of trace tetracycline antibiotics in a microchip with amperometry. Electrophoresis 30 (18). doi: 10.1002/elps.200900117
  128. Lee G, Park I, Kwon K, Kwon T, Seo J, Chang WJ, Nam H, Cha GS, Choi MH, Yoon DS, Lee SW (2012a) Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies. Biomed Microdevices 14(2):375–384. doi: 10.1007/s10544-011-9614-7 Google Scholar
  129. Lee JW, Hong JK, Kjeang E (2012b) Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications. Electrochim Acta 83:430–438. doi: 10.1016/j.electacta.2012.07.104 Google Scholar
  130. Levy SL, Craighead HG (2010) DNA manipulation, sorting, and mapping in nanofluidic systems. Chem Soc Rev 39(3):1133–1152. doi: 10.1039/b820266b Google Scholar
  131. Lewis AP, Cranny A, Harris NR, Green NG, Wharton JA, Wood RJK, Stokes KR (2013) Review on the development of truly portable and in situ capillary electrophoresis systems. Meas Sci Technol 24(4). doi: 10.1088/0957-0233/24/4/042001
  132. Li JP, Peng TZ, Peng YQ (2003) A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a Prussian blue modified electrode. Electroanalysis 15(12):1031–1037. doi: 10.1002/elan.200390124 Google Scholar
  133. Liang XG, Chou SY (2008) Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett 8(5):1472–1476. doi: 10.1021/nl080473k Google Scholar
  134. Lillo M, Losic D (2009) Ion-beam pore opening of porous anodic alumina: the formation of single nanopore and nanopore arrays. Mater Lett 63(3–4):457–460. doi: 10.1016/j.matlet.2008.11.007 Google Scholar
  135. Lim TK, Ohta H, Matsunaga T (2003) Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal Chem 75(14):3316–3321. doi: 10.1021/ac020749n Google Scholar
  136. Lin K-W, Huang Y-K, Su H-L, Hsieh Y-Z (2008) In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis. Anal Chim Acta 619(1):115–121. doi: 10.1016/j.aca.2008.02.062 Google Scholar
  137. Lin DJ, Wu J, Wang M, Yan F, Ju HX (2012) Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing. Anal Chem 84(8):3662–3668. doi: 10.1021/ac3001435 Google Scholar
  138. Lindsay S, Vazquez T, Egatz-Gomez A, Loyprasert S, Garcia AA, Wang J (2007) Discrete microfluidics with electrochemical detection. Analyst 132(5):412–416. doi: 10.1039/b617631c Google Scholar
  139. Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566. doi: 10.1021/ja2071779 Google Scholar
  140. Liu H, Crooks RM (2012) Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem 84(5):2528–2532. doi: 10.1021/ac203457h Google Scholar
  141. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197. doi: 10.1109/84.846699 Google Scholar
  142. Liu Y, Wipf DO, Henry CS (2001) Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst 126(8):1248–1251. doi: 10.1039/b101479j Google Scholar
  143. Liu AL, He FY, Hu YL, Xia XH (2006a) Plastified poly(ethylene terephthalate) (PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection for pharmaceutical analysis. Talanta 68(4):1303–1308. doi: 10.1016/j.talanta.2005.07.043 Google Scholar
  144. Liu Y, Yuan R, Chai YQ, Tang DP, Dai JY, Zhong X (2006b) Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sens Actuators B Chem 115(1):109–115. doi: 10.1016/j.snb.2005.08.048 Google Scholar
  145. Liu G, Lin Y-Y, Wang J, Wu H, Wai CM, Lin Y (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 79(20):7644–7653. doi: 10.1021/ac070691i Google Scholar
  146. Liu AH, Zhao QT, Guan XY (2010) Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. Anal Chim Acta 675(2):106–115. doi: 10.1016/j.aca.2010.07.001 Google Scholar
  147. Liu C, Qu Y, Luo Y, Fang N (2011) Recent advances in single-molecule detection on micro- and nano-fluidic devices. Electrophoresis 32(23):3308–3318. doi: 10.1002/elps.201100159 Google Scholar
  148. Liu B, Zhang Y, Mayer D, Krause H-J, Jin Q, Zhao J, Offenhäusser A, Xu Y (2012a) Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis 33(8):1247–1250Google Scholar
  149. Liu G, Wang S, Liu J, Song D (2012b) An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal Chem 84(9):3921–3928Google Scholar
  150. Liu Y, Kwa T, Revzin A (2012c) Simultaneous detection of cell-secreted TNF-alpha, and IFN-gamma using micropatterned aptamer-modified electrodes. Biomaterials 33(30):7347–7355. doi: 10.1016/j.biomaterials.2012.06.089 Google Scholar
  151. Liu P, Martin RJ, Dong L (2013) Microelectrofluidic grids for nematodes—a lensless image-sensorless approach for on-chip tracking of nematode locomotion. Lab Chip 13:650–661. doi: 10.1039/c2lc41174a Google Scholar
  152. Lu J, Ge S, Ge L, Yan M, Yu J (2012) Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta 80:334–341. doi: 10.1016/j.electacta.2012.07.024 Google Scholar
  153. Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43(4):496–505. doi: 10.1021/ar900165x Google Scholar
  154. Mai TD, Pham TTT, Pham HV, Saìiz J, Ruiz CG, Hauser PC (2013) Portable capillary electrophoresis instrument with automated injector and contactless conductivity detection. Anal Chem 85:2333–2339. doi: 10.1021/ac303328g Google Scholar
  155. Manica DP, Mitsumori Y, Ewing AG (2003) Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip. Anal Chem 75(17):4572–4577. doi: 10.1021/ac034235f Google Scholar
  156. Mannerbro R, Ranlof M, Robinson N, Forchheimer R (2008) Inkjet printed electrochemical organic electronics. Synth Met 158(13):556–560. doi: 10.1016/j.synthmet.2008.03.030 Google Scholar
  157. Mariella R Jr (2008) Sample preparation: the weak link in microfluidics-based biodetection. Biomed Microdevices 10(6):777–784. doi: 10.1007/s10544-008-9190-7 Google Scholar
  158. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182. doi: 10.1039/b820557b Google Scholar
  159. Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal Chem 72(14):3196–3202. doi: 10.1021/ac000160t Google Scholar
  160. Martin RS, Gawron AJ, Fogarty BA, Regan FB, Dempsey E, Lunte SM (2001) Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry. Analyst 126(3):277–280. doi: 10.1039/b009827m Google Scholar
  161. Martin RS, Ratzlaff KL, Huynh BH, Lunte SM (2002) In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. Anal Chem 74(5):1136–1143. doi: 10.1021/ac011087p Google Scholar
  162. Mecker LC, Martin RS (2008) Integration of microdialysis sampling and microchip electrophoresis with electrochemical detection. Anal Chem 80(23):9257–9264. doi: 10.1021/ac801614r Google Scholar
  163. Mensack MM, Wydallis JB, Lynn NS, Dandy DS, Henry CS (2013) Spatially resolved electrochemical sensing of chemical gradients. Lab Chip 13(2):208–211. doi: 10.1039/c2lc41054k Google Scholar
  164. Michael AC, Wightman RM (1996) Microelectrodes. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  165. Mir M, Katakis I (2008) Target label-free, reagentless electrochemical DNA biosensor based on sub-optimum displacement. Talanta 75(2):432–441. doi: 10.1016/j.talanta.2007.11.035 Google Scholar
  166. Mir M, Jenkins ATA, Katakis I (2008) Ultrasensitive detection based on an aptamer beacon electron transfer chain. Electrochem Commun 10(10):1533–1536. doi: 10.1016/j.elecom.2008.04.040 Google Scholar
  167. Moeller R, Fritzsche W (2005) Chip-based electrical detection of DNA. IEEE Proc Nanobiotechnol 152(1):47–51. doi: 10.1049/ip-nbt:20045020 Google Scholar
  168. Momotenko D, Cortes-Salazar F, Lesch A, Wittstock G, Girault HH (2011) Microfluidic push-pull probe for scanning electrochemical microscopy. Anal Chem 83(13):5275–5282. doi: 10.1021/ac2006729 Google Scholar
  169. Moscovici M, Bhimjib A, Kelley SO (2013) Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array. Lab Chip 13:940–946. doi: 10.1039/c2lc41049d Google Scholar
  170. Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8(12):2015–2031. doi: 10.1039/b812343h Google Scholar
  171. Neugebauer S, Evans SR, Aguilar ZP, Mosbach M, Fritsch I, Schuhmann W (2004) Analysis in ultrasmall volumes: microdispensing of picoliter droplets and analysis without protection from evaporation. Anal Chem 76(2):458–463. doi: 10.1021/ac0346860 Google Scholar
  172. Newaz AKM, Markov DA, Prasai D, Bolotin KI (2012) Graphene transistor as a probe for streaming potential. Nano Lett 12(6):2931–2935. doi: 10.1021/nl300603v Google Scholar
  173. Noh HN, Kim JS (2013) Detection of K-ras oncogene using magnetic beads-quantum dots in microfluidic chip. J Nanosci Nanotechnol 13(8):5240–5244. doi: 10.1166/jnn.2013.7054 Google Scholar
  174. Nyholm L (2005) Electrochemical techniques for lab-on-a-chip applications. Analyst 130(5):599–605. doi: 10.1039/b415004j Google Scholar
  175. Oliver LM, Dunlop PSM, Byrne JA, Blair IS, Boyle M, McGuigan KG, McAdams ET (2006) An impedimetric sensor for monitoring the growth of Staphylococcus epidermidis. In: Conference proceedings: 28th annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 1, pp 535–538Google Scholar
  176. Ordeig O, Ortiz P, Munoz-Berbel X, Demming S, Buttgenbach S, Fernandez-Sanchez C, Llobera A (2012) Dual photonic-electrochemical lab on a chip for online simultaneous absorbance and amperometric measurements. Anal Chem 84(8):3546–3553. doi: 10.1021/ac203106x Google Scholar
  177. Pai RS, Walsh KM, Crain MM, Roussel TJ Jr, Jackson DJ, Baldwin RP, Keynton RS, Naber JF (2009) Fully integrated three-dimensional electrodes for electrochemical detection in microchips: fabrication, characterization, and applications. Anal Chem 81(12):4762–4769. doi: 10.1021/ac9002529 Google Scholar
  178. Paixao TRLC, Cardoso JL, Bertotti M (2007) Determination of nitrate in mineral water and sausage samples by using a renewable in situ copper modified electrode. Talanta 71(1):186–191. doi: 10.1016/j.talanta.2006.03.040 Google Scholar
  179. Peng H, Soeller C, Travas-Sejdic J (2007) Novel conducting polymers for DNA sensing. Macromolecules 40(4):909–914. doi: 10.1021/ma062060g Google Scholar
  180. Pohlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M (2009) Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens Bioelectron 24(9):2766–2771. doi: 10.1016/j.bios.2009.01.042 Google Scholar
  181. Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18(12):1401–1420. doi: 10.1016/j.diamond.2009.09.008 Google Scholar
  182. Radke SA, Alocilja EC (2005) A high density microelectrode array biosensor for detection of E. coli O157: H7. Biosens Bioelectron 20(8):1662–1667. doi: 10.1016/j.bios.2004.07.021 Google Scholar
  183. Rahimi M, Mikkelsen SR (2011) Cyclic biamperometry at micro-interdigitated electrodes. Anal Chem 83(19):7555–7559. doi: 10.1021/ac2012703 Google Scholar
  184. Rassaei L, Marken F (2010) Pulse-voltammetric glucose detection at gold junction electrodes. Anal Chem 82(17):7063–7067. doi: 10.1021/ac101303s Google Scholar
  185. Ratnakumar BV, Smart MC, Surampudi S (2002) Electrochemical impedance spectroscopy and its applications to lithium ion cells. In: Seventeenth annual battery conference on applications and advances proceedings of conference (Cat No02TH8576). doi: 10.1109/bcaa.2002.986414
  186. Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25(4):174–181. doi: 10.1016/j.tibtech.2007.02.008 Google Scholar
  187. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21(3):389–407. doi: 10.1016/j.bios.2004.12.001 Google Scholar
  188. Robinson DL, Venton BJ, Heien M, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49(10):1763–1773. doi: 10.1373/49.10.1763 Google Scholar
  189. Robinson ND, Edman L, Chhowalla M (2012) Graphene electrodes for organic metal-free light-emitting devices. Phys Scr T146:014023Google Scholar
  190. Rocchitta G, Secchi O, Alvau MD, Migheli R, Calia G, Bazzu G, Farina D, Desole MS, O’Neill RD, Serra PA (2012) Development and characterization of an implantable biosensor for telemetric monitoring of ethanol in the brain of freely moving rats. Anal Chem 84(16):7072–7079. doi: 10.1021/ac301253h Google Scholar
  191. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763. doi: 10.1039/b714449k Google Scholar
  192. Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG, Unwin PR, Macpherson JV (2013) Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. Anal Chem 85:163–169. doi: 10.1021/ac3023586 Google Scholar
  193. Sassa F, Laghzali H, Fukuda J, Suzuki H (2010) Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures. Anal Chem 82(20):8725–8732. doi: 10.1021/ac102289a Google Scholar
  194. Sasso LA, Johnston IH, Zheng M, Gupte RK, Uendar A, Zahn JD (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612. doi: 10.1007/s10404-012-0980-0 Google Scholar
  195. Schueller OJA, Brittain ST, Whitesides GM (1999) Fabrication of glassy carbon microstructures by soft lithography. Sens Actuators A Phys 72(2):125–139. doi: 10.1016/s0924-4247(98)00218-0 Google Scholar
  196. Schwarz MA, Galliker B, Fluri K, Kappes T, Hauser PC (2001) A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device. Analyst 126(2):147–151. doi: 10.1039/b007383k Google Scholar
  197. Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R (2008) Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal Chem 80(24):9475–9482. doi: 10.1021/ac801607w Google Scholar
  198. Shiddiky MJA, Shim Y-B (2007) Trace analysis of DNA: preconcentration, separation, and electrochemical detection in microchip electrophoresis using Au nanoparticles. Anal Chem 79(10):3724–3733. doi: 10.1021/ac0701177 Google Scholar
  199. Shiddiky MJA, Park DS, Shim YB (2005) Detection of polymerase chain reaction fragments using a conducting polymer-modified screen-printed electrode in a microfluidic device. Electrophoresis 26(24):4656–4663. doi: 10.1002/elps.200500447 Google Scholar
  200. Shiddiky MJA, Park H, Shim Y-B (2006) Direct analysis of trace phenolics with a microchip: in-channel sample preconcentration, separation, and electrochemical detection. Anal Chem 78(19):6809–6817. doi: 10.1021/ac0606002 Google Scholar
  201. Shinwari MW, Zhitomirsky D, Deen IA, Selvaganapathy PR, Deen MJ, Landheer D (2010) Microfabricated reference electrodes and their biosensing applications. Sensors 10(3):1679–1715. doi: 10.3390/s100301679 Google Scholar
  202. Sin ML, Gao J, Liao JC, Wong PK (2011) System integration—a major step toward lab on a chip. J Biol Eng 5:6Google Scholar
  203. Sinkala E, McCutcheon JE, Schuck MJ, Schmidt E, Roitman MF, Eddington DT (2012) Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip 12(13):2403–2408. doi: 10.1039/c2lc40168a Google Scholar
  204. Spence DM, Torrence NJ, Kovarik ML, Martin RS (2004) Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 129(11):995–1000. doi: 10.1039/b410547h Google Scholar
  205. Suehiro J, Noutomi D, Shutou M, Hara M (2003) Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen-antibody reaction. J Electrostat 58(3–4):229–246. doi: 10.1016/s0304-3886(03)00062-7 Google Scholar
  206. Sun XH, Gillis KD (2006) On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Anal Chem 78(8):2521–2525. doi: 10.1021/ac052037d Google Scholar
  207. Swami NS, Chou CF, Terberueggen R (2005) Two-potential electrochemical probe for study of DNA immobilization. Langmuir 21(5):1937–1941. doi: 10.1021/la0493767 Google Scholar
  208. Swensen JS, Xiao Y, Ferguson BS, Lubin AA, Lai RY, Heeger AJ, Plaxco KW, Soh HT (2009) Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J Am Chem Soc 131(12):4262–4266. doi: 10.1021/ja806531/z Google Scholar
  209. Swinney K, Bornhop DJ (2000) Detection in capillary electrophoresis. Electrophoresis 21(7):1239–1250. doi: 10.1002/(sici)1522-2683(20000401)21:7<1239:aid-elps1239>;2-6 Google Scholar
  210. Takhistov P (2004) Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate. Biosens Bioelectron 19(11):1445–1456. doi: 10.1016/j.bios.2003.08.015 Google Scholar
  211. Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of l-tryptophan, l-tyrosine and l-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80(5):2182–2186. doi: 10.1016/j.talanta.2009.11.027 Google Scholar
  212. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25(5):480–489. doi: 10.1016/j.trac.2005.11.008 Google Scholar
  213. Vamvakaki V, Chaniotakis NA (2008) DNA stabilization and hybridization detection on porous silicon surface by EIS and total reflection FT-IR spectroscopy. Electroanalysis 20(17):1845–1850. doi: 10.1002/elan.200804268 Google Scholar
  214. Vandaveer WR, Fritsch I (2002) Measurement of ultrasmall volumes using anodic stripping voltammetry. Anal Chem 74(14):3575–3578. doi: 10.0121/ao011036s Google Scholar
  215. Vazquez M, Frankenfeld C, Tomazelli Coltro WK, Carrilho E, Diamond D, Lunte SM (2010) Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Analyst 135(1):96–103. doi: 10.1039/b908985c Google Scholar
  216. Vessman J, Stefan RI, Van Staden JF, Danzer K, Lindner W, Burns DT, Fajgelj A, Muller H (2001) Selectivity in analytical chemistry—(IUPAC Recommendations 2001). Pure Appl Chem 73(8):1381–1386. doi: 10.1351/pac200173081381 Google Scholar
  217. Wallingford RA, Ewing AG (1987) Capillary zone electrophoresis with electrochemical detection. Anal Chem 59(14):1762–1766. doi: 10.1021/ac00141a005 Google Scholar
  218. Wang J (2002) Portable electrochemical systems. Trac Trends Anal Chem 21(4):226–232. doi: 10.1016/s0165-9936(02)00402-8 Google Scholar
  219. Wang CL, Madou M (2005) From MEMS to NEMS with carbon. Biosens Bioelectron 20(10):2181–2187. doi: 10.1016/j.bios.2004.09.034 Google Scholar
  220. Wang J, Pumera M (2002) Dual conductivity/amperometric detection system for microchip capillary electrophoresis. Anal Chem 74(23):5919–5923. doi: 10.1021/ac020416q Google Scholar
  221. Wang J, Tian BM, Sahlin E (1999) Micromachined electrophoresis chips with thick-film electrochemical detectors. Anal Chem 71(23):5436–5440. doi: 10.1021/ac990807d Google Scholar
  222. Wang J, Chen G, Chatrathi MP, Fujishima A, Tryk DA, Shin D (2003a) Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector. Anal Chem 75(4):935–939. doi: 10.1021/ac0262053 Google Scholar
  223. Wang J, Chen G, Pumera M (2003b) Microchip separation and electrochemical detection of amino acids and peptides following precolumn derivatization with naphthalene-2,3-dicarboxyaldehyde. Electroanalysis 15(10):862–865. doi: 10.1002/elan.200390106 Google Scholar
  224. Wang J, Ibanez A, Chatrathi MP (2003c) On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. J Am Chem Soc 125(28):8444–8445. doi: 10.1021/ja036067e Google Scholar
  225. Wang J, Chen G, Muck A, Shin DC, Fujishima A (2004a) Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines. J Chromatogr A 1022(1–2):207–212. doi: 10.1016/j.chroma.2003.09.044 Google Scholar
  226. Wang J, Chen G, Wang M, Chatrathi MP (2004b) Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst 129(6):512–515. doi: 10.1039/b401503g Google Scholar
  227. Wang CL, Jia GY, Taherabadi LH, Madou MJ (2005a) A novel method for the fabrication of high-aspect ratio C-MEMS structures. J Microelectromech Syst 14(2):348–358. doi: 10.1109/jmems.2004.839312 Google Scholar
  228. Wang J, Mannino S, Camera C, Chatrathi MP, Scampicchio M, Zima J (2005b) Microchip capillary electrophoresis with amperometric detection for rapid separation and detection of seleno amino acids. J Chromatogr A 1091(1–2):177–182. doi: 10.1016/j.chroma.2005.07.055 Google Scholar
  229. Wang AJ, Xu JJ, Chen HY (2006) Proteins modification of poly(dimethylsiloxane) microfluidic channels for the enhanced microchip electrophoresis. J Chromatogr A 1107(1–2):257–264. doi: 10.1016/j.chroma.2005.12.040 MathSciNetGoogle Scholar
  230. Wang Y, Chen H, He Q, Soper SA (2008) A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection. Electrophoresis 29(9):1881–1888. doi: 10.1002/elps.200700377 Google Scholar
  231. Wasalathanthri DP, Mani V, Tang CK, Rusling JF (2011) Microfluidic electrochemical array for detection of reactive metabolites formed by cytochrome P450 enzymes. Anal Chem 83(24):9499–9506. doi: 10.1021/ac202269t Google Scholar
  232. Wei Y, Wong LP, Toh C-S (2013) Fuel cell virus sensor using virus capture within antibody-coated nanochannels. Anal Chem 85:1350–1357. doi: 10.1021/ac302942y Google Scholar
  233. Welch D, Christen JB (2013) Seamless integration of CMOS and microfluidics using flip chip bonding. J Micromech Microeng 23(3). doi: 10.1088/0960-1317/23/3/035009
  234. Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid State Lett 13(9):D109–D111. doi: 10.1149/1.3456590 Google Scholar
  235. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. doi: 10.1038/nature05058 Google Scholar
  236. Wolfrum B, Zevenbergen M, Lemay S (2008) Nanofluidic redox cycling amplification for the selective detection of catechol. Anal Chem 80(4):972–977. doi: 10.1021/ac7016647 Google Scholar
  237. Woolley AT, Lao KQ, Glazer AN, Mathies RA (1998) Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 70(4):684–688. doi: 10.1021/ac971135z Google Scholar
  238. Wu JL, Zhu JZ, Zhang GX, Lin XR, Cheng NY (1996) Fabrication and application of a diamond-film glucose biosensor based on a H2O2 microarray electrode. Anal Chim Acta 327(2):133–137Google Scholar
  239. Xie J, Miao YN, Shih J, He Q, Liu J, Tai YC, Lee TD (2004) An electrochemical pumping system for on-chip gradient generation. Anal Chem 76(13):3756–3763. doi: 10.1021/ac035188u Google Scholar
  240. Xu X, Zhang S, Chen H, Kong J (2009) Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments. Talanta 80(1):8–18. doi: 10.1016/j.talanta.2009.06.039 Google Scholar
  241. Yan JL, Du Y, Liu JF, Cao WD, Sun SH, Zhou WH, Yang XR, Wang EK (2003) Fabrication of integrated microelectrodes for electrochemical detection on electrophoresis microchip by electroless deposition and micromolding in capillary technique. Anal Chem 75(20):5406–5412. doi: 10.1021/ac034017m Google Scholar
  242. Yi CQ, Zhang Q, Li CW, Yang J, Zhao JL, Yang MS (2006) Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal Bioanal Chem 384(6):1259–1268. doi: 10.1007/s00216-005-0252-x Google Scholar
  243. Yu XB, Lv R, Ma ZQ, Liu ZH, Hao YH, Li QZ, Xu DK (2006) An impedance array biosensor for detection of multiple antibody-antigen interactions. Analyst 131(6):745–750. doi: 10.1039/b517148b Google Scholar
  244. Zemann AJ (2001) Conductivity detection in capillary electrophoresis. Trends Anal Chem 20(6–7):346–354. doi: 10.1016/s0165-9936(01)00076-0 Google Scholar
  245. Zevenbergen MAG, Krapf D, Zuiddam MR, Lemay SG (2007) Mesoscopic concentration fluctuations in a fluidic nanocavity detected by redox cycling. Nano Lett 7(2):384–388. doi: 10.1021/nl062571g Google Scholar
  246. Zevenbergen MAG, Singh PS, Goluch ED, Wolfrum BL, Lemay SG (2009) Electrochemical correlation spectroscopy in nanofluidic cavities. Anal Chem 81(19):8203–8212. doi: 10.1021/ac9014885 Google Scholar
  247. Zevenbergen MAG, Singh PS, Goluch ED, Wolfrum BL, Lemay SG (2011) Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett 11(7):2881–2886. doi: 10.1021/nl2013423 Google Scholar
  248. Zhang XJ, Wang J, Ogorevc B, Spichiger UE (1999) Glucose nanosensor based on Prussian-blue modified carbon-fiber cone nanoelectrode and an integrated reference electrode. Electroanalysis 11(13):945–949. doi: 10.1002/(sici)1521-4109(199909)11:13<945:aid-elan945>;2-z Google Scholar
  249. Zhang K, Zhao L-B, Guo S-S, Shi B-X, Lam T-L, Leung Y-C, Chen Y, Zhao X-Z, Chan HLW, Wang Y (2010) A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosens Bioelectron 26(2):935–939. doi: 10.1016/j.bios.2010.06.039 Google Scholar
  250. Zhang T, Lai C-Z, Fierke MA, Stein A, Bühlmann P (2012) Advantages and limitations of reference electrodes with an ionic liquid junction and three-dimensionally ordered macroporous carbon as solid contact. Anal Chem 84(18):7771–7778. doi: 10.1021/ac3011507 Google Scholar
  251. Zhao W, van den Berg A (2008) Lab on paper. Lab Chip 8(12):1988–1991. doi: 10.1039/b814043j Google Scholar
  252. Zhao Q, Gan ZH, Zhuang QK (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14(23):1609–1613. doi: 10.1002/elan.200290000 Google Scholar
  253. Zhou Y, Zhi J (2009) The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5):1189–1196. doi: 10.1016/j.talanta.2009.05.026 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemical and Biomedical EngineeringRochester Institute of TechnologyRochesterUSA
  2. 2.Department of Chemical EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations