Microfluidics and Nanofluidics

, Volume 17, Issue 5, pp 871–878 | Cite as

A microfluidic device for thermal particle detection

  • Ashwin Kumar Vutha
  • Benyamin Davaji
  • Chung Hoon Lee
  • Glenn M. Walker
Research Paper

Abstract

We demonstrate the use of heat to count microscopic particles. A thermal particle detector (TPD) was fabricated by combining a 500-nm-thick silicon nitride membrane containing a thin-film resistive temperature detector with a silicone elastomer microchannel. Particles with diameters of 90 and 200 μm created relative temperature changes of 0.11 and −0.44 K, respectively, as they flowed by the sensor. A first-order lumped thermal model was developed to predict the temperature changes. Multiple particles were counted in series to demonstrate the utility of the TPD as a particle counter.

Keywords

Microfluidics Particle counting Thermal 

References

  1. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984CrossRefGoogle Scholar
  2. Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New YorkGoogle Scholar
  3. Janes MR, Rommel C (2011) Next-generation flow cytometry. Nat Biotechnol 29(7):602–604CrossRefGoogle Scholar
  4. Jin JS, Lee JS, Kwon O (2008) Electron effective mean free path and thermal conductivity predictions of metallic thin films. Appl Phys Lett 92(17):171910CrossRefGoogle Scholar
  5. Karayacoubian P, Bahrami M, Culham JR (2005) Asymptotic solutions of effective thermal conductivity. In: Proceedings of IMECE 2005. ASME international mechanical engineering congress and exposition. Orlando, Florida, USA, IMECE2005-82734Google Scholar
  6. Lacy F (2011) Evaluating the resistivity-temperature relationship for RTDs and other conductors. IEEE Sens J 11(5):1208–1213CrossRefGoogle Scholar
  7. Lee J, Spadaccini C, Mukerjee E, King W (2008) Differential scanning calorimeter based on suspended membrane single crystal silicon microhotplate. J Microelectromech Syst 17(6):1513–1525CrossRefGoogle Scholar
  8. Leonard WF, Ramey RL (1966) Temperature coefficient of resistance in thin metal films. J Appl Phys 37(9):3634–3635CrossRefGoogle Scholar
  9. Murali S, Jagtiani AV, Xia X, Carletta J, Zhe J (2009) A microfluidic coulter counting device for metal wear detection in lubrication oil. Rev Sci Instrum 80(1):016105CrossRefGoogle Scholar
  10. Shardt O, Mitra SK, Derksen J (2012) Lattice boltzmann simulations of pinched flow fractionation. Chem Eng Sci 75(0):106–119CrossRefGoogle Scholar
  11. van der Wiel A, Linder C, de Rooij N, Bezinge A (1993) A liquid velocity sensor based on the hot-wire principle. Sens Actuators A Phys 37(38(0):693–697CrossRefGoogle Scholar
  12. Yi N, Park BK, Kim D, Park J (2011) Micro-droplet detection and characterization using thermal responses. Lab Chip 11:2378–2384CrossRefGoogle Scholar
  13. Zhang H, Chon C, Pan X, Li D (2009) Methods for counting particles in microfluidic applications. Microfluid Nanofluid 7(6):739–749CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ashwin Kumar Vutha
    • 2
  • Benyamin Davaji
    • 3
  • Chung Hoon Lee
    • 3
  • Glenn M. Walker
    • 1
  1. 1.Joint Department of Biomedical EngineeringUNC Chapel Hill and NC State UniversityRaleighUSA
  2. 2.Department of Mechanical, Aerospace, and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Electrical and Computer EngineeringMarquette UniversityMilwaukeeUSA

Personalised recommendations