Syringe-assisted point-of-care micropumping utilizing the gas permeability of polydimethylsiloxane

  • 683 Accesses

  • 15 Citations


By utilizing the high gas permeability of polydimethylsiloxane (PDMS), a simple syringe-assisted pumping method was introduced. A dead-end microfluidic channel was partially surrounded by an embedded microchamber, with a thin PDMS wall isolating the dead-end channel and the embedded microchamber. A syringe was connected with the microchamber port by a short tube, and the syringe plunger was manually pulled out to generate low pressure inside the microchamber. When sample liquid was loaded in the inlet port, air trapped in the dead-end channel would diffuse into the surrounding microchamber through the PDMS wall, creating an instantaneous pumping of the liquid inside the dead-end channel. By only pulling the syringe manually, a constant low flow with a rate ranging from 0.089 to 4 nl/s was realized as functions of two key parameters: the PDMS wall thickness and the overlap area between the dead-end channel and the surrounded microchamber. This method enabled point-of-care pumping without pre-evacuating the PDMS devices in a bulky vacuum chamber.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL, Ross BM, Ricco AJ, Lee LP (2011) Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11(5):845–850

  2. Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9(23):3330–3337

  3. Hosokawa K, Sato K, Ichikawa N, Maeda M (2004) Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 4(3):181–185

  4. Hosokawa K, Omata M, Sato K, Maeda M (2006) Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 6(2):236–241

  5. Li W, Chen T, Chen Z, Fei P, Yu Z, Pang Y, Huang Y (2012) Squeeze-chip: a finger-controlled microfluidic flow network device and its application to biochemical assays. Lab Chip 12(9):1587–1590

  6. Liang DY, Tentori AM, Dimov IK, Lee LP (2011) Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices. Biomicrofluidics 5(2):024108–024116

  7. Mark AE, Bruce KG (2006) A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J Micromech Microeng 16(11):2396

  8. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci, Part B: Polym Phys 38(3):415–434

  9. Nilghaz A, Wicaksono DHB, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12(1):209–218

  10. Ong W-L, Tang K-C, Agarwal A, Nagarajan R, Luo L-W, Yobas L (2007) Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip. Lab Chip 7(10):1357–1366

  11. Sung JH, Kam C, Shuler ML (2010) A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455

  12. Tang X, Zheng B (2011) A PDMS viscometer for assaying endoglucanase activity. Analyst 136(6):1222–1226

  13. Trung NB, Saito M, Takabayashi H, Viet PH, Tamiya E, Takamura Y (2010) Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sens Actuators B Chem 149(1):284–290

  14. Weibel DB, Siegel AC, Lee A, George AH, Whitesides GM (2007) Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane). Lab Chip 7(12):1832–1836

  15. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

  16. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251

  17. Ziegler J, Zimmermann M, Hunziker P, Delamarche E (2008) High-performance immunoassays based on through-stencil patterned antibodies and capillary systems. Anal Chem 80(5):1763–1769

Download references


This work was partially supported by grants from NSF (ECCS-1002255 and ECCS-0736501).

Author information

Correspondence to Kwang W. Oh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (WMV 1822 kb)

Supplementary material 3 (WMV 8073 kb)

Supplementary material 4 (WMV 3862 kb)

Supplementary material 5 (WMV 2197 kb)

Supplementary material 1 (PDF 5 kb)

Supplementary material 2 (WMV 1822 kb)

Supplementary material 3 (WMV 8073 kb)

Supplementary material 4 (WMV 3862 kb)

Supplementary material 5 (WMV 2197 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, L., Lee, H. & Oh, K.W. Syringe-assisted point-of-care micropumping utilizing the gas permeability of polydimethylsiloxane. Microfluid Nanofluid 17, 745–750 (2014).

Download citation


  • Point-of-care
  • Polydimethylsiloxane (PDMS)
  • Pump