Microfluidics and Nanofluidics

, Volume 17, Issue 4, pp 647–655

Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow

  • Byung Hang Ha
  • Kang Soo Lee
  • Jin Ho Jung
  • Hyung Jin Sung
Research Paper

Abstract

We present a three-dimensional (3D) hydrodynamic focusing device built on a single-layer platform using single sheath flow. Despite the simple structure and operation, the device not only achieves narrow focusing of a sample fluid or particles but also switches the cross-sectional size and lateral position of the sample stream. The focusing mechanism utilizes four Dean vortices generated in a high-speed flow through a curved channel. Theoretical calculations, numerical simulations, and an experimental study demonstrated that the device could focus microparticles that resemble human platelets in terms of particle size and density in a single-stream manner. Further simulation study suggested that the device could focus most cell sizes used in flow cytometry with a throughput of 200,000 cells s−1. In addition, the device can function as a 3D liquid-core/liquid-cladding (L2) optical waveguide by introducing a core liquid with a refractive index higher than that of the cladding.

Keywords

Lab-on-a-chip devices Waveguides Microfluidics Dean vortex Hydrodynamic focusing 

References

  1. Ali MA, Moghaddasi J, Ahmed SA (1991) Optical properties of cooled Rhodamine B in ethanol. J Opt Soc Am B 8:1807–1810CrossRefGoogle Scholar
  2. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366CrossRefGoogle Scholar
  3. Bara B, Nandakumar K, Masliyah JH (1992) An experimental and numerical study of the Dean problem: flow development towards two-dimensional multiple solutions. J Fluid Mech 244:339–376CrossRefGoogle Scholar
  4. Bhagat AA, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914CrossRefGoogle Scholar
  5. Chang CC, Huang ZX, Yang RJ (2007) Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. J Micromech Microeng 17:1479–1486CrossRefGoogle Scholar
  6. Chiu YJ, Cho SH, Mei Z, Lien V, Wu TF, Lo YH (2013) Universally applicable three-dimensional hydrodynamic microfluidic flow focusing. Lab Chip 13:1803–1809CrossRefGoogle Scholar
  7. Chung S, Park SJ, Kim JK, Chung C, Han DC, Chang JK (2003) Plastic microchip flow cytometer based on 2- and 3-dimensional hydrodynamic flow focusing. Microsyst Technol 9:525–533CrossRefGoogle Scholar
  8. Chung AJ, Gossett DR, Carlo DD (2012) Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows. Small 201202413Google Scholar
  9. Eyal S, Quake SR (2002) Velocity-independent microfluidic flow cytometry. Electrophoresis 23:2653–2657CrossRefGoogle Scholar
  10. Ganán-Calvo A (2004) Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. Phys Rev E 69:027301CrossRefGoogle Scholar
  11. Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2651CrossRefGoogle Scholar
  12. Goda K, Ayazi A, Gossett DR, Sadasivam J, Lonappan CK, Sollier E, Fard AM, Hur SC, Adam J, Murray C, Wang C, Brackbill N, Carlo DD, Jalali B (2012) High-throughput single-microparticle imaging flow analyzer. Proc Natl Acad Sci USA 109:11630–11635CrossRefGoogle Scholar
  13. Gordin J, Chen CH, Cho SH, Qiao W, Tsai F, Lo YH (2008) Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J Biophoton 1:355–376CrossRefGoogle Scholar
  14. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Carlo DD (2012) Hydrodynamic stretching of single cells for large population mechanical phynotyping. Proc Natl Acad Sci USA 109:7630–7635CrossRefGoogle Scholar
  15. Hong S, Tsou PH, Chou CK, Yamaguchi H, Su C, Hung MC, Kameoka J (2012) Microfluidic three-dimensional hydrodynamic flow focusing for the rapid protein concentration analysis. Biomicrofluidics 6:024132CrossRefGoogle Scholar
  16. Howell PB Jr, Golden JP, Hilliard JR, Erickson JS, Mottb DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8:1097–1103CrossRefGoogle Scholar
  17. Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376–2378CrossRefGoogle Scholar
  18. Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M (2010) Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4:2077–2087CrossRefGoogle Scholar
  19. Jahn A, Lucas F, Wepf RA, Dittrich PS (2013) Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation. Langmuir 29:1717–1723CrossRefGoogle Scholar
  20. Jung EE, Erickson D (2012) Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids. Lab Chip 12:2575–2579CrossRefGoogle Scholar
  21. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–2912CrossRefGoogle Scholar
  22. Kemna EWM, Schoeman RM, Wolbers F, Vermes I, Weitz DA, Berg A (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12:2881–2887CrossRefGoogle Scholar
  23. Knight J, Vishwanath A, Brody J, Austin R (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80:3863–3864CrossRefGoogle Scholar
  24. Lee GB, Hwei BH, Huang GR (2001) Micromachined pre-focused M × N flow switches for continuous multi-sample injection. Micromech Microeng 11:654–661CrossRefGoogle Scholar
  25. Lee MG, Choi S, Park JK (2009) Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 9:3155–3160CrossRefGoogle Scholar
  26. Lee KS, Kim SB, Lee KH, Sung HJ, Kim SS (2010) Three-dimensional microfluidic liquid-core/liquid-cladding waveguide. Appl Phys Lett 97:021109CrossRefGoogle Scholar
  27. Liu M, Chen Y, Guo Q, Li R, Sun X, Yang J (2011) Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing. Nanotechnology 22:125302CrossRefGoogle Scholar
  28. Mao X, Waldeisen JR, Huang TJ (2007) “Microfluidic drifting”-implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7:1260–1262CrossRefGoogle Scholar
  29. Mao X, Nawaz AA, Lin SS, Lapsley MI, Zhao Y, McCoy JP, El-Deiry WS, Huang TJ (2012) An integrated, multiparmetric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing. Biomicrofluidics 6:024113CrossRefGoogle Scholar
  30. Martín-Banderas L, Flores-Mosquera M, Riesco-Chueca P, Rodríguez-Gil A, Cebolla Á, Chávez S, Gañán-Calvo A (2005) Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles. Small 1:688–692CrossRefGoogle Scholar
  31. Mello AJ, Edel JB (2007) Hydrodynamic focusing in microstructures: improved detection efficiencies in subjemtoliter probe volumes. J Appl Phys 101:084903CrossRefGoogle Scholar
  32. Morimoto Y, Tan WH, Takeuchi S (2009) Three-dimensional axisymmetric flow-focusing device using stereolithography. Biomed Microdev 11:369–377CrossRefGoogle Scholar
  33. Nawaz AA, Zhang X, Mao X, Rufo J, Lin SS, Guo F, Zhao Y, Lapsley M, Li P, McCoy JP, Levine SJ, Huang TJ (2014) Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”. Lab Chip 14:415–423CrossRefGoogle Scholar
  34. Pabit S, Hagen S (2002) Laminar-flow fluid mixer for fast fluorescence kinetics studies. Biophys J 83:2872–2878CrossRefGoogle Scholar
  35. Park HY, Qiu X, Rhoades E, Korlach J, Kwok LW, Zipfel WR, Webb WW, Pollack L (2006) Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing. Anal Chem 78:4465–4473CrossRefGoogle Scholar
  36. Pollack L, Tate M, Darnton N, Knight J, Gruner S, Eaton W, Austin R (1999) Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proc Natl Acad Sci USA 96:10115–10117CrossRefGoogle Scholar
  37. Prakash S, Karacor MB (2011) Characterizing stability of “click” modified glass surfaces to common microfabrication conditions and aqueous electrolyte solutions. Nanoscale 3:3309CrossRefGoogle Scholar
  38. Prakash S, Ling TM, Selby JC, Moore JS, Shannon MA (2007) “Click” modification of silica surfaces and glass microfluidic channels. Anal Chem 79:1661–1667CrossRefGoogle Scholar
  39. Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R (2011) Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 23:H79–H83CrossRefGoogle Scholar
  40. Schönfeld F, Hardt S (2004) Simulation of helical flows in microchannels. AIChE J 50:771–778CrossRefGoogle Scholar
  41. Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91:033901CrossRefGoogle Scholar
  42. Takeuchi S, Garstecki P, Weibel DB, Whitesides GM (2005) An axisymmetric flow-focusing microfluidic device. Adv Mater 17:1067–1072CrossRefGoogle Scholar
  43. Testa G, Bernini R (2012) Integrated tunable liquid optical fiber. Lab Chip 12:3670–3672CrossRefGoogle Scholar
  44. Vezenov DV, Mayers BT, Wolfe DB, Whitesides GM (2005) Integrated fluorescent light source for optofluidic applications. Appl Phys Lett 86:041104CrossRefGoogle Scholar
  45. Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87CrossRefGoogle Scholar
  46. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 101:12434–12438CrossRefGoogle Scholar
  47. Wolff A, Perch-Nielsen I, Larsen UD, Friis P, Goranovic G, Poulsen C, Kutter J, Telleman P (2003) Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3:22–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Byung Hang Ha
    • 1
  • Kang Soo Lee
    • 1
  • Jin Ho Jung
    • 1
  • Hyung Jin Sung
    • 1
  1. 1.Department of Mechanical EngineeringKAISTTaejonKorea

Personalised recommendations