Microfluidics and Nanofluidics

, Volume 17, Issue 2, pp 401–412

Boundary layer analysis and heat transfer of a nanofluid

Research Paper

DOI: 10.1007/s10404-013-1319-1

Cite this article as:
MacDevette, M.M., Myers, T.G. & Wetton, B. Microfluid Nanofluid (2014) 17: 401. doi:10.1007/s10404-013-1319-1


A theoretical model for nanofluid flow, including Brownian motion and thermophoresis, is developed and analysed. Standard boundary layer theory is used to evaluate the heat transfer coefficient near a flat surface. The model is almost identical to previous models for nanofluid flow which have predicted an increase in the heat transfer with increasing particle concentration. In contrast our work shows a marked decrease indicating that under the assumptions of the model (and similar ones) nanofluids do not enhance heat transfer. It is proposed that the discrepancy between our results and previous ones is due to a loose definition of the heat transfer coefficient and various ad hoc assumptions.


Nanofluid Convective heat transfer Boundary layer Heat transfer coefficient 

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre de Recerca MatemàticaBellaterra, BarcelonaSpain
  2. 2.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Mathematics DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations