Microfluidics and Nanofluidics

, Volume 16, Issue 5, pp 921–939 | Cite as

Review and analysis of performance metrics of droplet microfluidics systems

  • Liat Rosenfeld
  • Tiras Lin
  • Ratmir Derda
  • Sindy K. Y. Tang
Research Paper


Droplet microfluidics has enabled many recent applications in high-throughput screening and diagnostics. Little work has been done, however, to analyze the performance of droplet-based assays. This review aims to apply what is known in the literature to the analysis of the performance metrics of droplet-based assays, with specific relevance to diagnostic and biomedical applications based on two processes: enzymatic reactions and cell culture in droplets. By considering the physical scaling of individual processes—droplet generation, reaction kinetics, cell growth, and droplet interrogation—it is possible to extract a practical relationship between input parameters (e.g., droplet size and droplet polydispersity) and the output characteristics (e.g., throughput, dynamic range, and accuracy) of the assay. This review can serve as a guide to the design of droplet-based assays for achieving desired performance. While the focus is on assays based on enzymatic reactions and cell cultures, a similar analysis can be applied to other assays based on polymerase chain reaction and the detection of nucleic acids.


Droplet microfluidics Performance metrics High-throughput screening Diagnostics 



We acknowledge funding from the Stanford Center for Innovation in Global Health, Stanford Woods Institute for the Environment, the California Sea Grant Project No. R/CONT-219 through NOAA’s National Sea Grant College Program, 3M, and the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. We acknowledge Y. Chen for initial help with the manuscript.


  1. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret J-C, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci 107:4004–4009CrossRefGoogle Scholar
  2. Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18(12): 121512(1)–121512(13)Google Scholar
  3. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366CrossRefGoogle Scholar
  4. Barbier V, Willaime H, Tabeling P, Jousse F (2006) Producing droplets in parallel microfluidic systems. Phys Rev E 74(4):046306(1)–046306(4)Google Scholar
  5. Bardin D, Kendall MR, Dayton PA, Lee AP (2013) Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module. Biomicrofluidics 7(3):034112(1)–034112(13)Google Scholar
  6. Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433CrossRefGoogle Scholar
  7. Baret J-C, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858CrossRefGoogle Scholar
  8. Baret J-C, Beck Y, Billas-Massobrio I, Moras D, Griffiths AD (2010) Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem Biol 17(5):528–536CrossRefGoogle Scholar
  9. Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045CrossRefGoogle Scholar
  10. Bauer AW, Perry DM, Kirby WMM (1959) Single-disk antibiotic-sensitivity testing of Staphylococci—an analysis of technique and results. Arch Intern Med 104(2):208–216CrossRefGoogle Scholar
  11. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496Google Scholar
  12. Berg JM, Tymoczko JL, Stryer L (2010) Biochemistry, 7th edn. W. H. Freeman, New YorkGoogle Scholar
  13. Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272CrossRefGoogle Scholar
  14. Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie-Int Ed 48:5908–5911CrossRefGoogle Scholar
  15. Bremond N, Bibette J (2012) Exploring emulsion science with microfluidics. Soft Matter 8(41):10549–10559CrossRefGoogle Scholar
  16. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106(34):14195–14200CrossRefGoogle Scholar
  17. Brown CD, Davis HT (2006) Receiver operating characteristics curves and related decision measures: a tutorial. Chemom Intell Lab Syst 80(1):24–38CrossRefGoogle Scholar
  18. Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79(3):209–218CrossRefGoogle Scholar
  19. Chen Y, Gani AW, Tang SKY (2012) Characterization of sensitivity and specificity in leaky droplet-based assays. Lab Chip 12(23):5093–5103CrossRefGoogle Scholar
  20. Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336CrossRefGoogle Scholar
  21. Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel DB, Garstecki P (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12(9):1629–1637CrossRefGoogle Scholar
  22. Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15(5):427–437CrossRefGoogle Scholar
  23. Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing; Seventeenth informational supplement vol 27. Wayne, PAGoogle Scholar
  24. Courtois F, Olguin LF, Whyte G, Theberge AB, Huck WTS, Hollfelder F, Abell C (2009) Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal Chem 81(8):3008–3016CrossRefGoogle Scholar
  25. Cubaud T, Mason TG (2008) Capillary threads and viscous droplets in square microchannels. Phys Fluids 20(5):053302(1)–053302(11)Google Scholar
  26. Derda R, Tang SKY, Whitesides GM (2010) Uniform amplification of phage with different growth characteristics in individual compartments consisting of monodisperse droplets. Angewandte Chemie-Intel Ed 49(31):5301–5304CrossRefGoogle Scholar
  27. Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10(1):30–38CrossRefGoogle Scholar
  28. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143CrossRefGoogle Scholar
  29. Du GS, Pan JZ, Zhao SP, Zhu Y, den Toonder JMJ, Fang Q (2013) Cell-based drug combination screening with a microfluidic droplet array system. Anal Chem 85(14):6740–6747CrossRefGoogle Scholar
  30. Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264CrossRefGoogle Scholar
  31. Elhanati Y, Brenner N (2012) Metabolic variability in micro-populations. PLoS One 7(12):52105(1)–52105(9)Google Scholar
  32. Fayer MD (2012) Dynamics of water interacting with interfaces, molecules, and ions. Acc Chem Res 45(1):3–14CrossRefGoogle Scholar
  33. Frenz L, Blank K, Brouzes E, Griffiths AD (2009) Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9(10):1344–1348CrossRefGoogle Scholar
  34. Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651CrossRefGoogle Scholar
  35. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRefGoogle Scholar
  36. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155CrossRefGoogle Scholar
  37. Hashimoto M, Shevkoplyas SS, Zasonska B, Szymborski T, Garstecki P, Whitesides GM (2008) Formation of bubbles and droplets in parallel. Coupled flow-focusing geometries. Small 4(10):1795–1805CrossRefGoogle Scholar
  38. Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R, Pentoney SL, Yang DL, Lee AP (2011) 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11(22):3838–3845CrossRefGoogle Scholar
  39. Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE, Schmitz CHJ, Koster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8(10):1632–1639CrossRefGoogle Scholar
  40. Huebner A, Olguin LF, Bratton D, Whyte G, Huck WTS, de Mello AJ, Edel JB, Abell C, Hollfelder F (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80(10):3890–3896CrossRefGoogle Scholar
  41. Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, Hylckama Vlieg JE, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci 104(46):18217–18222CrossRefGoogle Scholar
  42. Inoue I, Wakamoto Y, Moriguchi H, Okano K, Yasuda K (2001) On-chip culture system for observation of isolated individual cells. Lab Chip 1(1):50–55CrossRefGoogle Scholar
  43. Joensson HN, Svahn HA (2012) Droplet microfluidics—a tool for single-cell analysis. Angewandte Chemie-Intl Ed 51(49):12176–12192CrossRefGoogle Scholar
  44. Joensson HN, Samuels ML, Brouzes ER, Medkova M, Uhlen M, Link DR, Andersson-Svahn H (2009) Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angewandte Chemie-Intl Ed 48(14):2518–2521CrossRefGoogle Scholar
  45. Kintses B, van Vliet LD, Devenish SRA, Hollfelder F (2010) Microfluidic droplets: new integrated workflows for biological experiments. Curr Opin Chem Biol 14(5):548–555CrossRefGoogle Scholar
  46. Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F, Leine C, Hollfelder F (2012) Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem Biol 19(8):1001–1009CrossRefGoogle Scholar
  47. Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, Rothberg JM, Link DR, Leamon JH (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80(23):8975–8981CrossRefGoogle Scholar
  48. Kukizaki M, Wada T (2008) Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Coll Sur A Physicochem Eng Asp 317(1–3):146–154CrossRefGoogle Scholar
  49. Lagus TP, Edd JF (2013) A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J Phys D Appl Phys 46: 114005 (21pp)Google Scholar
  50. Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21(3):032103CrossRefGoogle Scholar
  51. Lee YY, Narayanan K, Gao SJ, Ying JY (2012) Elucidating drug resistance properties in scarce cancer stem cells using droplet microarray. Nano Today 7(1):29–34CrossRefGoogle Scholar
  52. Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW, Page AP, Lo CC, Chain PS, Hallam SJ, Hansen CL (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci 109(20):7665–7670CrossRefGoogle Scholar
  53. Li W, Greener J, Voicu D, Kumacheva E (2009) Multiple modular microfluidic (M-3) reactors for the synthesis of polymer particles. Lab Chip 9(18):2715–2721CrossRefGoogle Scholar
  54. Lim J, Gruner P, Konrad M, Baret J-C (2013) Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab Chip 13(8):1472–1475CrossRefGoogle Scholar
  55. Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153–2162CrossRefGoogle Scholar
  56. Marcoux PR, Dupoy M, Mathey R, Novelli-Rousseau A, Heran V, Morales S, Rivera F, Joly PL, Moy J-P, Mallard F (2011) Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enumeration. Coll Sur A Physicochem Eng Asp 377(1–3):54–62CrossRefGoogle Scholar
  57. Martin K, Henkel T, Baier V, Grodrian A, Schon T, Roth M, Kohler JM, Metze J (2003) Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 3(3):202–207CrossRefGoogle Scholar
  58. Matochko WL, Ng S, Jafari MR, Romaniuk J, Tang SKY, Derda R (2012) Uniform amplification of phage display libraries in monodisperse emulsions. Methods 58(1):18–27CrossRefGoogle Scholar
  59. Mazutis L, Araghi AF, Miller OJ, Baret J-C, Frenz L, Janoshazi A, Taly V, Miller BJ, Hutchison JB, Link D, Griffiths AD, Ryckelynck M (2009a) Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem 81(12):4813–4821CrossRefGoogle Scholar
  60. Mazutis L, Baret J-C, Treacy P, Skhiri Y, Araghi AF, Ryckelynck M, Taly V, Griffiths AD (2009b) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9(20):2902–2908CrossRefGoogle Scholar
  61. Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891CrossRefGoogle Scholar
  62. McCalla SE, Tripathi A (2011) Microfluidic reactors for diagnostics applications. In: Yarmush ML, Duncan JS, Gray ML (eds) Annual review of biomedical engineering, vol 13. Annual Review of Biomedical Engineering, pp 321–343Google Scholar
  63. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298CrossRefGoogle Scholar
  64. Michaelis L, Menten ML, Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50(39):8264–8269CrossRefGoogle Scholar
  65. Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619CrossRefGoogle Scholar
  66. Miller OJ, El Harrak A, Mangeat T, Baret J-C, Frenz L, El Debs B, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD (2012) High-resolution dose-response screening using droplet-based microfluidics. Proc Natl Acad Sci 109(2):378–383CrossRefGoogle Scholar
  67. Moore GE, Ito E, Ulrich K, Sandberg AA (1966) Culture of human leukemia cells. Cancer 19(5):713–723CrossRefGoogle Scholar
  68. Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293CrossRefGoogle Scholar
  69. Nisisako T, Ando T, Hatsuzawa T (2012) High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip 12(18):3426–3435CrossRefGoogle Scholar
  70. Niu X, deMello AJ (2012) Building droplet-based microfluidic systems for biological analysis. Biochem Soc Trans 40:615–623CrossRefGoogle Scholar
  71. Paegel BM, Joyce GF (2010) Microfluidic compartmentalized directed evolution. Chem Biol 17(7):717–724CrossRefGoogle Scholar
  72. Park J, Kerner A, Burns MA, Lin XXN (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6(2):17019(1)–17019(7).Google Scholar
  73. Pekin D, Skhiri Y, Baret J-C, Le Corre D, Mazutis L, Ben Salem C, Millot F, El Harrak A, Hutchison JB, Larson JW, Link DR, Laurent-Puig P, Griffiths AD, Taly V (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166CrossRefGoogle Scholar
  74. Peters T (1995) All about albumin: biochemistry, genetics and medical applications. Academic Press, New YorkGoogle Scholar
  75. Platzman I, Janiesch J-W, Spatz JP (2013) Synthesis of nanostructured and biofunctionalized water-in-oil droplets as tools for homing T cells. J Am Chem Soc 135(9):3339–3342CrossRefGoogle Scholar
  76. Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807CrossRefGoogle Scholar
  77. Rosenfeld L, Fan L, Chen Y, Swoboda R, Tang SKY (2013) Break-up of droplets in a concentrated emulsion flowing through a narrow constriction. Soft Matter. doi: 10.1039/C3SM51843D Google Scholar
  78. Schonbrun E, Abate AR, Steinvurzel PE, Weitz DA, Crozier KB (2010) High-throughput fluorescence detection using an integrated zone-plate array. Lab Chip 10(7):852–856CrossRefGoogle Scholar
  79. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601(1)–016601(41)Google Scholar
  80. Sela Y, Magdassi S, Garti N (1995) Release of markers from the inner water phase of W/O/W emulsions stabilized by silicone-based polymeric surfactants. J Control Release 33(1):1–12CrossRefGoogle Scholar
  81. Silber JJ, Biasutti A, Abuin E, Lissi E (1999) Interactions of small molecules with reverse micelles. Adv Coll Interface Sci 82(1–3):189–252CrossRefGoogle Scholar
  82. Skhiri Y, Gruner P, Semin B, Brosseau Q, Pekin D, Mazutis L, Goust V, Kleinschmidt F, El Harrak A, Hutchison JB, Mayot E, Bartolo J-F, Griffiths AD, Taly V, Baret J-C (2012) Dynamics of molecular transport by surfactants in emulsions. Soft Matter 8(41):10618–10627CrossRefGoogle Scholar
  83. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125(47):14613–14619CrossRefGoogle Scholar
  84. Srisa-Art M, Bonzani IC, Williams A, Stevens MM, deMello AJ, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134(11):2239–2245CrossRefGoogle Scholar
  85. Stan CA, Tang SKY, Whitesides GM (2009) Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal Chem 81(6):2399–2402CrossRefGoogle Scholar
  86. Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Annu Rev Fluid Mech 26:65–102CrossRefGoogle Scholar
  87. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220CrossRefGoogle Scholar
  88. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angewandte Chemie-Intern Ed 49(34):5846–5868CrossRefGoogle Scholar
  89. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502(1)–094502(4).Google Scholar
  90. Vladisavljevic GT, Shimizu M, Nakashima T (2005) Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. J Membr Sci 250(1–2):69–77CrossRefGoogle Scholar
  91. Vladisavljevic GT, Shimizu M, Nakashima T (2006) Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: influence of mean pore size, interfacial tension and continuous phase viscosity. J Membr Sci 284(1–2):373–383CrossRefGoogle Scholar
  92. Vladisavljevic GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics Nanofluidics 13(1):151–178CrossRefGoogle Scholar
  93. Wilson GS (1922) The proportion of viable bacteria in young cultures with especial reference to the technique employed in counting. J Bacteriol 7(4):405–446Google Scholar
  94. Woronoff G, El Harrak A, Mayot E, Schicke O, Miller OJ, Soumillion P, Griffiths AD, Ryckelynck M (2011) New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal Chem 83(8):2852–2857CrossRefGoogle Scholar
  95. Wu N, Courtois F, Zhu Y, Oakeshott J, Easton C, Abell C (2010) Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution. Electrophoresis 31(18):3121–3128CrossRefGoogle Scholar
  96. Xie H, Mire J, Kong Y, Chang M, Hassounah HA, Thornton CN, Sacchettini JC, Cirillo JD, Rao J (2012) Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat Chem 4(10):802–809CrossRefGoogle Scholar
  97. Yuan JM, Martinezbilbao M, Huber RE (1994) Substitutions for glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Biochem J 299:527–531Google Scholar
  98. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots—a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Liat Rosenfeld
    • 1
  • Tiras Lin
    • 1
  • Ratmir Derda
    • 2
  • Sindy K. Y. Tang
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations