Advertisement

Microfluidics and Nanofluidics

, Volume 16, Issue 5, pp 895–905 | Cite as

Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device

  • Neus Godino
  • Elizaveta Vereshchagina
  • Robert GorkinIII
  • Jens Ducrée
Research Paper

Abstract

We present a novel paper-polymer hybrid construct for the simple automation of fundamental microfluidic operations in a lab-on-a-disc platform. The novel design, we term a paper siphon, consists of chromatographic paper strips embedded along a siphon microchannel. The paper siphon relies on two main interplaying forces to create unique valving and liquid-sampling methods in centrifugal microfluidics. At sufficiently low speeds, the inherent wicking of the paper overcomes the rotationally induced centrifugal force to drive liquids towards inwards positions of the disc. At elevated speeds, the dominant centrifugal force will extract liquid from the siphon paper strip towards the edge of the disc. Distinct modes of flow control have been developed to account for water (reagent) and more viscous plasma samples. The system functionality is demonstrated by the automation of sequential sample preparation steps in a colorimetric triglyceride assay: plasma is metered from a whole blood sample and incubated with a specific enzymatic mixture, followed by detection of triglyceride levels through (off-disc) absorbance measurements. The successful quantification of triglycerides and the simple fabrication offer attractive directions for such hybrid devices in low-cost bioanalysis.

Keywords

Lab-on-a-disc Centrifugal microfluidics Paper microfluidics Point of care diagnostic Triglyceride assay 

Notes

Acknowledgments

This work has been supported in part by the FP-7 ENIAC programme CAJAL4EU, Enterprise Ireland under Grant No. IR/2010/0002 and the Science Foundation of Ireland (Grant No. 10/CE/B1821).

References

  1. Al-Tamimi M, Shen W, Zeineddine R et al (2012) Validation of paper-based assay for rapid blood typing. Anal Chem 84:1661–1668. doi: 10.1021/ac202948t CrossRefGoogle Scholar
  2. Arnaud CH (2012) Paper devices move forward. Chem Eng News 90:1–4. doi: 10.1039/c2lc40126f Google Scholar
  3. Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluidics :769–787. doi: 10.1007/s10404-012-0999-2
  4. Bascurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450CrossRefGoogle Scholar
  5. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. doi: 10.1021/ac901071p CrossRefGoogle Scholar
  6. Czugala M, Gorkin R III, Phelan T, Gaughran J, Curto VF, Ducrée J, Diamond D, Benito-López F (2012) Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis. Lab Chip 12:5069–5078. doi: 10.1039/c2lc40781g CrossRefGoogle Scholar
  7. Fridley GE, Le HQ, Fu E, Yager P (2012) Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip 12:4321–4327. doi: 10.1039/c2lc40785j CrossRefGoogle Scholar
  8. Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B (2011) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83:7941–7946CrossRefGoogle Scholar
  9. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579. doi: 10.1021/ac300689s CrossRefGoogle Scholar
  10. Fulmer T (2012) Paper point of care. Sci Bus Exch 5:1–2. doi: 10.1038/scibx.2012.1021 Google Scholar
  11. Garcia-Cordero JL, Barrett LM, O’Kennedy R, Ricco AJ (2010) Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomed Microdevices 12:1051–1059. doi: 10.1007/s10544-010-9459-5 CrossRefGoogle Scholar
  12. Ge L, Wang S, Song X, Ge S, Yu J (2012) 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12:3150–3158. doi: 10.1039/c2lc40325k CrossRefGoogle Scholar
  13. Godino N, Comaskey E, Gorkin R, Ducrée JD (2012a) Centrifugally enhanced paper microfluidics. In: The 25th International Conference on Micro Electro Mechanical Systems, 29 January–2 February 2012, Paris, France, p 1017–1020Google Scholar
  14. Godino N, Vereshchagina E, Gorkin R, Ducrée J (2012b) Hybrid paper-polymer lab-on-a-disc for bioassay integration. In: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012) 0:1369–1371Google Scholar
  15. Godino N, Gorkin R, Linares AV, Burger R, Ducrée J (2013) Comprehensive Integration of homogeneous bioassays via centrifugo-pneumatic cascading. Lab Chip 13:685–694CrossRefGoogle Scholar
  16. Gorkin R, Clime L, Madou M, Kido H (2010) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 9:541–549. doi: 10.1007/s10404-010-0571-x CrossRefGoogle Scholar
  17. Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76:025101. doi: 10.1063/1.1834703 CrossRefGoogle Scholar
  18. Grumann M, Steigert J, Riegger L, Moser I, Enderle B, Urban G, Zengerle R, Ducrée J (2006) Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed Microdevices 8:209–214. doi: 10.1007/s10544-006-8172-x CrossRefGoogle Scholar
  19. Hwang H, Kim S-H, Kim T-H, Park J-K, Cho Y-K (2011) Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 11:3404–3406. doi: 10.1039/c1lc20445a CrossRefGoogle Scholar
  20. Jarujamrus P, Tian J, Li X, Siripinanond A, Shiowatana J, Shen W (2012) Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst 137:2205–2210. doi: 10.1039/c2an15798e CrossRefGoogle Scholar
  21. Kitsara M, Ducrée J (2013) Integration of functional materials and surface modification for polymeric microfluidic systems. J Micromech Microeng 23:033001. doi: 10.1088/0960-1317/23/3/033001 CrossRefGoogle Scholar
  22. Kwong P, Gupta M (2012) Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations. Anal Chem 84:10129–10135. doi: 10.1021/ac302861v CrossRefGoogle Scholar
  23. Liana DD, Raguse B, Gooding JJ, Chow E (2012) Recent advances in paper-based sensors. Sensors 12:11505–11526. doi: 10.3390/s120911505 CrossRefGoogle Scholar
  24. Lowe GDO, Barbebel JC (1988) Plasma and blood viscosity. Clin Blood Rheol 1:11–44Google Scholar
  25. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
  26. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28:925–942Google Scholar
  27. Schembri CT, Burd TL, Kopf-Sill AR et al (1995) Centrifugation and capillarity integrated into a multiple analyte whole blood analyser. J Autom Chem 17:99–104. doi: 10.1155/S1463924695000174 CrossRefGoogle Scholar
  28. Shah P, Zhu X, Li C (2013) Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn 13:83–91CrossRefGoogle Scholar
  29. Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron T, Veres T, Madou M (2009) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluidics 9:55–63. doi: 10.1007/s10404-009-0523-5 CrossRefGoogle Scholar
  30. Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398. doi: 10.1039/c2lc21299d CrossRefGoogle Scholar
  31. Steigert J, Grumann M, Brenner T, Riegger T, Harter J, Zengerle R, Ducrée J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044. doi: 10.1039/b607051p CrossRefGoogle Scholar
  32. Steigert J, Brenner T, Grumann M, Riegger L, Lutz S, Zengerle R, Ducrée J (2007) Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed Microdevices 9:675–679. doi: 10.1007/s10544-007-9076-0 CrossRefGoogle Scholar
  33. Vereshchagina E, Bourke K, Meehan L, Dixit C, Glade DM, Ducrée J (2012) Multi-material paper-disc devices for low cost biomedical diagnostics. In: The proceedings of the 26th International Conference on Micro Electro Mechanical Systems, 20–24 January, TaipeiGoogle Scholar
  34. Yang X, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280. doi: 10.1039/c1lc20803a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Neus Godino
    • 1
    • 2
  • Elizaveta Vereshchagina
    • 1
    • 3
  • Robert GorkinIII
    • 1
    • 4
  • Jens Ducrée
    • 1
  1. 1.Biomedical Diagnostics Institute, National Centre for Sensor Research, School of Physical SciencesDublin City UniversityDublinIreland
  2. 2.Fraunhofer Institute for Biomedical Engineering IBMTPotsdamGermany
  3. 3.Microsystems Centre of Tyndall National InstituteCorkIreland
  4. 4.ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research InstituteUniversity of WollongongWollongongAustralia

Personalised recommendations