Advertisement

Microfluidics and Nanofluidics

, Volume 16, Issue 4, pp 667–675 | Cite as

A facile on-demand droplet microfluidic system for lab-on-a-chip applications

  • Hongbo Zhou
  • Shuhuai YaoEmail author
Research Paper

Abstract

We present a facile microfluidic droplet-on-demand (DOD) system in which a pulsed pressure generated by a high-speed solenoid valve is used to control the formation and movement of water-in-oil emulsion droplets in a T-junction microchannel. We investigated the working principle of the DOD system and established a scaling model for the droplet volume in terms of the amplitude and duration of the pulse and the hydraulic resistance of the injection channel. The droplet formation was characterized in three designs at various pressure pulses. The experimental results support our scaling model very well. In the DOD system we developed, nanoliter-volume droplets with a throughput of a few droplets per second were on-demand generated. Moreover, we examined the applicable scope of the DOD system. As examples of practical applications of the DOD system, we demonstrated a digital display module to show droplets formed at a prescribed time and a droplet array with a concentration gradient to show droplets formed with a precise volume. We expect our work can provide design guidelines for a robust DOD system and improve the capabilities of droplet-based microfluidics in ‘lab-on-a-chip’ systems.

Keywords

Droplet on demand Pressure control Solenoid valve Microfluidics 

Notes

Acknowledgments

This work was supported by the Direct Allocation Grant (No. DAG12EG07-13) from HKUST and the National Science Foundation of China (No. 61006086). The authors would like to thank Dr. Gang Li in SIMIT for his valuable suggestion.

Supplementary material

10404_2013_1268_MOESM1_ESM.doc (1011 kb)
Online Resource 1 about the detail scaling model for the DOD process. (DOC 1,011 kb)
10404_2013_1268_MOESM2_ESM.mpg (1006 kb)
Online Resource 2: effect of the DOD system. (MPG 1,006 kb)

Online Resource 3: the digital character ‘5’ displaying process. (MPG 584 kb)

Online Resource 4: the DOD droplets trapping process. (MPG 1,352 kb)

References

  1. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364CrossRefGoogle Scholar
  2. Atencia J, Beebe DJ (2004) Controlled microfluidic interfaces. Nature 437(7059):648–655CrossRefGoogle Scholar
  3. Baroud CN, de Saint Vincent MR, Delville J-P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7(8):1029–1033CrossRefGoogle Scholar
  4. Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045CrossRefGoogle Scholar
  5. Bransky A, Korin N, Khoury M, Levenberg S (2008) A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip 9(4):516–520CrossRefGoogle Scholar
  6. Churski K, Korczyk P, Garstecki P (2010) High-throughput automated droplet microfluidic system for screening of reaction conditions. Lab Chip 10(7):816–818CrossRefGoogle Scholar
  7. Dolega ME, Jakiela S, Razew M, Rakszewska A, Cybulski O, Garstecki P (2012) Iterative operations on microdroplets and continuous monitoring of processes within them; determination of solubility diagrams of proteins. Lab Chip 12(20):4022–4025CrossRefGoogle Scholar
  8. Fidalgo LM, Whyte G, Bratton D, Kaminski CF, Abell C, Huck WTS (2008) From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angew Chem Int Ed 47(11):2042–2045CrossRefGoogle Scholar
  9. Galas J-C, Bartolo D, Studer V (2009) Active connectors for microfluidic drops on demand. New J Phys 11(7):075027CrossRefGoogle Scholar
  10. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRefGoogle Scholar
  11. Gu H, Murade CU, Duits MH, Mugele F (2011) A microfluidic platform for on-demand formation and merging of microdroplets using electric control. Biomicrofluidics 5:011101CrossRefGoogle Scholar
  12. Guo F, Liu K, Ji XH, Ding HJ, Zhang M, Zeng Q, Liu W, Guo SS, Zhao XZ (2010) Valve-based microfluidic device for droplet on-demand operation and static assay. Appl Phys Lett 97(23):233701–233703CrossRefGoogle Scholar
  13. Jung S-Y, Retterer ST, Collier CP (2010) On-demand generation of monodisperse femtolitre droplets by shape-induced shear. Lab Chip 10(20):2688–2694CrossRefGoogle Scholar
  14. Kotulski Z, Szczepiński W (2010) Functions of Independent random variables. In: Error analysis with applications in engineering, vol 169. Solid mechanics and its applications. Springer, Netherlands, pp 91–105. doi: 10.1007/978-90-481-3570-7_4
  15. Lin B-C, Su Y-C (2008) On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves. J Micromech Microeng 18(11):115005CrossRefGoogle Scholar
  16. Lin F, Saadi W, Rhee SW, Wang S-J, Mittal S, Jeon NL (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 4(3):164–167CrossRefGoogle Scholar
  17. Malloggi F, Gu H, Banpurkar A, Vanapalli S, Mugele F (2008) Electrowetting—a versatile tool for controlling microdrop generation. Eur Phys J E 26(1–2):91–96CrossRefGoogle Scholar
  18. Nguyen N-T, Ting T-H, Yap Y-F, Wong T-N, Chai JC-K, Ong W-L, Zhou J, Tan S-H, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91(8):084102–084103CrossRefGoogle Scholar
  19. Niu X, Gulati S, Edel JB (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8(11):1837–1841CrossRefGoogle Scholar
  20. Niu X, Gielen F, Edel JB (2011) A microdroplet dilutor for high-throughput screening. Nat Chem 3(6):437–442CrossRefGoogle Scholar
  21. Shemesh J, Nir A, Bransky A, Levenberg S (2011) Coalescence-assisted generation of single nanoliter droplets with predefined composition. Lab Chip 11(19):3225–3230CrossRefGoogle Scholar
  22. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem 115(7):792–796CrossRefGoogle Scholar
  23. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefGoogle Scholar
  24. Tan SH, Murshed SMS, Nguyen NT, Wong TN, Yobas L (2008) Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension. J Phys D Appl Phys 41(16):165501CrossRefGoogle Scholar
  25. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRefGoogle Scholar
  26. van Steijn V, Kleijn CR, Kreutzer MT (2010) Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip 10(19):2513–2518CrossRefGoogle Scholar
  27. Willaime H, Barbier V, Kloul L, Maine S, Tabeling P (2006) Arnold tongues in a microfluidic drop emitter. Phys Rev Lett 96(5):054501CrossRefGoogle Scholar
  28. Xu J, Attinger D (2008) Drop on demand in a microfluidic chip. J Micromech Microeng 18(6):065020CrossRefGoogle Scholar
  29. Xu J, Li S, Tan J, Luo G (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluid 5(6):711–717CrossRefGoogle Scholar
  30. Yeh C-H, Chen Y-C, Lin Y-C (2011) Generation of droplets with different concentrations using gradient-microfluidic droplet generator. Microfluid Nanofluid 11(3):245–253CrossRefGoogle Scholar
  31. Zeng S, Li B, Su X, Qin J, Lin B (2009) Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9(10):1340–1343CrossRefGoogle Scholar
  32. Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125(37):11170–11171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of ScienceShanghaiChina

Personalised recommendations