Microfluidics and Nanofluidics

, Volume 16, Issue 3, pp 597–603 | Cite as

Droplet transport through dielectrophoretic actuation using line electrode

  • Soubhik Kumar Bhaumik
  • Soumik Das
  • Suman Chakraborty
  • Sunando DasGuptaEmail author
Brief communication


We explore a novel transverse line electrode configuration for droplet transport through dielectrophoretic actuation with potential lab-on-chip applications. Using a lumped electromechanical model, we show a weak dependence of DEP actuation force on electrode spacing in this configuration. The configuration successfully triggers translational drop motion with minimal changes in contact angle at considerably low voltages. Two sessile, deionized water drops placed horizontally apart on a indium-tin–oxide-coated glass with additional coatings of polydimethylsiloxane, and a thin layer of Teflon is merged by applying an AC field (88 Vrms at 150 kHz) through a common horizontal wire electrode. A lateral motion of two drops is induced along the horizontal electrode, eventually leading to coalescence. The drop motion is unique compared to electrowetting in its near-constant dynamic contact angle, and irreversibility on withdrawal of electric field. The effect of frequency on the drop behavior is examined through a parametric study on single drops within the range of 2–200 kHz. It is interesting to observe a switch-over from DEP behavior at high frequency to EWOD behavior at low frequency around a critical frequency (Jones in Langmuir 18:4437–4443, 2002).


Dielectrophoretic actuation Droplet Line electrode Electrowetting 

Supplementary material

Supplementary material (AVI 1031 kb)

Supplementary material (AVI 3992 kb)


  1. Ahmed R, Jones TB (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17:1052–1058CrossRefGoogle Scholar
  2. Ahmed R, Hsu D, Bailey C, Jones TB (2003) Dispensing picoliter droplets using dielectrophoretic (DEP) micro-actuation International conference on microchannels and minichannels. Rochester, NYGoogle Scholar
  3. Berthier J (2008) Micro-drops and digital microfluidics. William Andrew Publishing, Norwich, NYGoogle Scholar
  4. Blake TD (2006) The physics of moving wetting lines. J Colloid Interface Sci 299:1–13CrossRefGoogle Scholar
  5. Blake TD, De Coninck J (2002) The influence of solid-liquid interactions on dynamic wetting. Adv Colloid Interface Sci 96:21–36CrossRefGoogle Scholar
  6. Chen CH, Tsai SL, Chen MK, Jang LS (2011) Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis. Sens Actuators B 159:321–327CrossRefGoogle Scholar
  7. Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80CrossRefGoogle Scholar
  8. Chugh D, Kaler KVIS (2010) Integrated liquid and droplet dielectrophoresis for biochemical assays. J Microfluid Nanofluid 8:445–456CrossRefGoogle Scholar
  9. Eoe JS, Ghadiri M (2003) Drop drop coalescence in an electric fields the effects of applied electric field and electrode geometry. Colloids Surf A Physicochem Eng Asp 219:253–279CrossRefGoogle Scholar
  10. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? J Microfluid Nanofluid 3:245–281CrossRefGoogle Scholar
  11. Griffiths DJ (1998) Introduction to electrodynamics. 3rd edn. Prentice HallGoogle Scholar
  12. Ichikawa T, Itoh K, Yamamotoa S, Sumita M (2004) Rapid demulsification of dense oil-in-water emulsion by low external electric field 1. Experimental evidence. Colloids Surf A Physicochem Eng Asp 242:21–26CrossRefGoogle Scholar
  13. Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Jones TB (2001) Liquid dielectrophoresis on the microscale. J Electrostatics 51:290–299CrossRefGoogle Scholar
  15. Jones TB (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18:4437–4443CrossRefGoogle Scholar
  16. Jones TB, Melcher JR (1973) Dynamics of electromechanical flow structures. Phys Fluids 16:393–400CrossRefGoogle Scholar
  17. Jones TB, Perry MP, Melcher JR (1971) Dielectric siphons. Science 174:1232–1233CrossRefGoogle Scholar
  18. Jones TB, Gunji M, Washizu M, Feldman M (2001) Dielectrophoretic liquid actuation and nanodrop formation. J Appl Phys 89(2):1441–1448CrossRefGoogle Scholar
  19. Jones TB, Fowler JD, Chang YS, Kim CJ (2003) Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 19:7646–7651CrossRefGoogle Scholar
  20. Jones TB, Wang KL, Yao DJ (2004) Frequency dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir 20:2813–2818CrossRefGoogle Scholar
  21. Jones TB, Gram R, Kentch K, Harding DR (2009) Capillarity and dielectrophoresis of liquid deuterium. J Phys D Appl Phys 42:225505CrossRefGoogle Scholar
  22. Kaler KVIS, Prakash R, Chugh D (2010) Liquid dielectrophoresis and surface microfluidics. Biomicrofluidics 4:022805–022817CrossRefGoogle Scholar
  23. Kanagasabapathi TT, Kaler KVIS (2007) Surface microfluidics-high-speed DEP liquid actuation on planar substrates and critical factors in reliable actuation. J Micromech Microeng 17:743–752CrossRefGoogle Scholar
  24. Mesa G, Fuentes ED, Saenz JJ (1996) Image charge methods for electrostatic calculations in field emission diodes. J Appl Phys 79(1):39–44CrossRefGoogle Scholar
  25. Pellat H (1894) CR Acad Sci (Paris) 119:675Google Scholar
  26. Pellat H (1895) Mesure de la force agissant sur les dielectriques liquids non eletrises places dans un champ elitrique. CR Acad Sci Paris 119:691–693Google Scholar
  27. Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22:869–871CrossRefGoogle Scholar
  28. Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in non uniform electric field. Cambridge University Press, Cambridge, UKGoogle Scholar
  29. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101CrossRefGoogle Scholar
  30. Prakash R, Paul R, Kaler KVIS (2010) Liquid DEP actuation and precision dispensing of variable volume droplets. Lab Chip 10:3094–3102CrossRefGoogle Scholar
  31. Wang KL, Jones TB (2005) Electrowetting dynamics of microfluidic actuation. Langmuir 21:4211–4217CrossRefGoogle Scholar
  32. Wang W, Jones TB (2011) Microfluidic actuation of insulating liquid droplets in a parallel plate device. J Phys Conf Ser 301:012057CrossRefGoogle Scholar
  33. Wang KL, Jones TB, Raisanen A (2007) Dynamic control of DEP actuation and droplet dispensing. J Micromech Microeng 17:76–80CrossRefGoogle Scholar
  34. Woodson HH, Melcher JR (1968) Electromechanical Dynamics. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Soubhik Kumar Bhaumik
    • 1
  • Soumik Das
    • 1
  • Suman Chakraborty
    • 2
  • Sunando DasGupta
    • 1
    Email author
  1. 1.Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations