Microfluidics and Nanofluidics

, Volume 16, Issue 1–2, pp 141–148 | Cite as

Catkin liked nano-Co3O4 catalyst built-in organic microreactor by PEMOCVD method for trace CO oxidation at room temperature

Research Paper

Abstract

In this paper, tricobalt tetraoxide (Co3O4) catalyst was coated on the polydimethylsiloxane microchannel by the plasma-enhanced metal-organic chemical vapor deposition technology. The obtained Co3O4 film was characterized by SEM, XRD, XPS, and TEM, and the results show that the as-deposited Co3O4 film was initially composed of many cauliflowers-shaped microclusters. Also, the microcauliflower was transformed from an amorphous phase to a crystal phase when the Co3O4 film was treated by Ar and O2 plasma for more than 20 min, and the crystal lattice line occurred on the surface of nano-sized-Co3O4 particles. Meanwhile, the interface of Co3O4 particles with diameter between 3 and 12 nm became obvious and some nano-catkin structures were also formed on the Co3O4 film. The ratio of Co3+/Co2+ in the spinel-type Co3O4 was nearly 2, and the nano-particles predominantly expose their {311}, {111}, and {220} planes. These morphologies and structure characteristics were found to be ideal for increasing the catalytic activity efficiency of Co3O4 for CO oxidation, and the catalytic stability of Co3O4 coated on the organic microreactor lasted nearly 85 h for trace CO oxidation at room temperature.

Keywords

Nano-sized catalyst  Organic microreactor  PEMOCVD  Heterogeneous catalytic oxidation 

References

  1. Bahlawane N (2006) Kinetics of methane combustion over CVD-made cobalt oxide catalysts. Appl Catal B Environ 67(3–4):168–176CrossRefGoogle Scholar
  2. Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L, Tondello E (2001) Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chem Mater 13:588–593CrossRefGoogle Scholar
  3. Barreca D, Gasparotto A, Lebedev OI, Maccato C, Pozza A, Tondello E, Turner S, Van Tendeloo G (2010) Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization. Cryst Eng Comm 12:2185–2197CrossRefGoogle Scholar
  4. Bart J, Kolkman AJ, Vries AJO, Koch K, Nieuwland PJ, Janssen H, Bentum JV, Ampt KAM, Rutjes FPJT, Wijmenga SS, Gardeniers H, Kentgens APM (2009) A microfluidic high-resolution NMR flow probe. J Am Chem Soc 131:5014–5015CrossRefGoogle Scholar
  5. Bhattacharya S, Datta A, Jordan MB, Gangopadhyay SJ (2005) Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14:590–597CrossRefGoogle Scholar
  6. Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon JM (2009) Defect chemistry and catalytic activity of nanosized Co3O4. Chem Mater 21:1939–1947CrossRefGoogle Scholar
  7. Dhar R, Pedrow PD, Liddell KC, Ming Q, Moeller TM, Osman MA (2005) Synthesis of Pt/ZrO2 catalyst on fecralloy substrates using composite plasma-polymerized films. IEEE Trans Plasma Sci 33(6):2035–2045CrossRefGoogle Scholar
  8. Guyon C, Barkallah A, Rousseau F, Giffard K, Morvan D, Tatoulian M (2011) Deposition of cobalt oxide thin films by plasma-enhanced chemical vapour deposition (PECVD) for catalytic applications. Surf Coat Technol 206:1673–1679CrossRefGoogle Scholar
  9. Hamelmann F, Echling AB, Aschentrup A et al (2004) Thin molybdenum oxide films produced by molybdenum pentacarbonyl 1-methylbutylisonitrile with plasma-assisted chemical vapor deposition. Thin Solid Films 446:167–171CrossRefGoogle Scholar
  10. Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43:406–446CrossRefGoogle Scholar
  11. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) On the catalytic activity of Co3O4 in low-temperature CO oxidation. J Catal 211:387–397Google Scholar
  12. Karches M, Morstein M, Rohr PRV, Pozzo RL, Giombi LJ, Baltanás MA (2002) Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal Today 72:267–279CrossRefGoogle Scholar
  13. Kołodziej A, Łojewska J, Tyczkowski J et al (2012) Coupled engineering and chemical approach to the design of a catalytic structured reactor for combustion of VOCs: cobalt oxide catalyst on knitted wire gauzes. Chem Eng J 200–202:329–337CrossRefGoogle Scholar
  14. Koyano G, Watanabe H, Okuhara T, Misono M (1996) Structure and catalysis of cobalt oxide overlayers prepared on zirconia by low-temperature-plasma oxidation. J Chem Soc Faraday Trans 92:3425–3430CrossRefGoogle Scholar
  15. Li W, Jung H, Hoa ND, Kim D, Hong SK, Kim H (2010) Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application. Sens Actuators B 150:160–166CrossRefGoogle Scholar
  16. Ma CY, Mu Z, Li JJ, Jin YG, Cheng J, Lu GQ, Hao ZP, Qiao SZ (2010) Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J Am Chem Soc 132:2608–2613CrossRefGoogle Scholar
  17. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmerman B (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28(3):318–323CrossRefGoogle Scholar
  18. Schafer D, Squier JA, Maarseveen JV, Bonn D, Bonn M, Müller M (2008) In situ quantitative measurement of concentration profiles in a microreactor with submicron resolution using multiplex CARS microscopy. J Am Chem Soc 130:11592–11593CrossRefGoogle Scholar
  19. Tyczkowski J, Kapica R, Łojewska J (2007) Thin cobalt oxide films for catalysis deposited by plasma-enhanced metal–organic chemical vapor deposition. Thin Solid Films 515:6590–6595CrossRefGoogle Scholar
  20. Varghese B, Zhang Y, Dai L, Tan VBC, Lim TC, Sow C-H (2008) Structure-mechanical property of individual cobalt oxide nanowires. Nano Lett 8:3226–3232CrossRefGoogle Scholar
  21. Vaz CAF, Henrich VE, Ahn CH, Altman EI (2009a) Growth and characterization of thin epitaxial Co3O4 (111) films. J Cryst Growth 311:2648–2654CrossRefGoogle Scholar
  22. Vaz CAF, Prabhakaran D, Altman EI, Henrich VE (2009b) Experimental study of the interfacial cobalt oxide in Co3O4/α-Al2O3 (0001) epitaxial films. Phys Rev B 80:155457CrossRefGoogle Scholar
  23. Wilczkowska E, Krawczyk K, Petryk J, Sobczak JW, Kaszkur Z (2010) Direct nitrous oxide decomposition with a cobalt oxide catalyst. Appl Catal A 389:165–172CrossRefGoogle Scholar
  24. Xie X, Li WY, Liu ZQ, Haruta M, Shen WJ (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749CrossRefGoogle Scholar
  25. Zaninia S, Riccardia C, Orlandib M, Grimoldi E (2008) Characterisation of SiOxCyHz thin films deposited by low-temperature PECVD. Vacuum 82:290–293CrossRefGoogle Scholar
  26. Zhang W, Tay HL, Lim SS, Wang YS, Zhong ZY, Xu R (2010) Supported cobalt oxide on MgO: highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl Catal B 95:93–99CrossRefGoogle Scholar
  27. Zheng J, Chu W, Zhang H, Jiang CF, Dai XY (2010) CO oxidation over Co3O4/SiO2 catalysts: effects of porous structure of silica and catalyst calcination temperature. J Nat Gas Chem 19:583–588CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. L. Chen
    • 1
    • 2
  • C. Guyon
    • 2
  • Z. X. Zhang
    • 1
  • B. Da Silva
    • 2
  • P. Da Costa
    • 3
  • S. Ognier
    • 2
  • D. Bonn
    • 2
    • 4
  • M. Tatoulian
    • 2
  1. 1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, and Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of EducationZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, École Nationale Supérieure de Chimie de Paris, Chimie ParisTechUniversité Pierre et Marie CurieParisFrance
  3. 3.Institut Jean Le Rond d’AlembertUniversité Pierre et Marie CurieSaint Cyr L’ÉcoleFrance
  4. 4.IOPUvAAmsterdamThe Netherlands

Personalised recommendations