Microfluidics and Nanofluidics

, Volume 16, Issue 1–2, pp 257–264 | Cite as

Mesoscopic simulation of the transient behavior of semi-diluted polymer solution in a microchannel following extensional flow

  • Sergey LitvinovEmail author
  • Xiangyu Hu
  • Marco Ellero
  • Nikolaus Adams
Research Paper


Using dissipative particle dynamics simulation, we investigate the transient behavior of a semi-dilute polymer solution in a microchannel at moderate Weissenberg numbers. The employed simulation method allows to study macroscopic properties of the solution and their relation to the microscopic properties of individual polymer. The solution enters the channel following an extensional flow with all polymers uniformly stretched. We observe that the shape of the velocity profile varies along the channel, from an almost parabolic to center-flattened type. The fully developed velocity profile at equilibrium is accurately described by the Carreau-Yasuda rheological model. We find that the relaxation time for the profile shape is equal to the relaxation time of the polymer extension in the flow direction. The established relation offers the potential to be utilized for microfluidics-based rheometers which measure, besides the steady solution rheology, also the polymer relaxation time using flow velocity data only.


Shear Rate Velocity Profile Dissipative Particle Dynamic Extensional Flow Weissenberg Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Uli Kleßinger and Andreas Bausch for the useful discussion. M.E. acknowledges the financial support provided by DFG via the EN 503/1-1 grant. S.L. gratefully acknowledges the support of the TUM-Graduate School Faculty Graduate Center Mechanical Engineering at the TU München. Simulations have been performed at Leibniz-Rechenzentrum, Garching, Munich, Germany.


  1. Breslauer D, Lee L, Muller S (2008) Simulation of flow in the silk gland. Biomacromolecules 10(1):49–57CrossRefGoogle Scholar
  2. Doyle P, Shaqfeh E, McKinley G, Spiegelberg S (1998) Relaxation of dilute polymer solutions following extensional flow. J Non-Newton Fluid Mech 76(1–3):79–110CrossRefzbMATHGoogle Scholar
  3. Espanol P (1995) Hydrodynamics from dissipative particle dynamics. Phys Rev E 52(2):1734–1742CrossRefMathSciNetGoogle Scholar
  4. Fan XJ, Phan-Thien N, Chen S, Wu XH, Ng TY (2006) Simulating flow of dna suspension using dissipative particle dynamics. Phys Fluids 18(6):063102CrossRefGoogle Scholar
  5. Fedosov DA, Pivkin IV, Karniadakis GE (2008) Velocity limit in dpd simulations of wall-bounded flows. J Comput Phys 227(4):2540–2559CrossRefzbMATHMathSciNetGoogle Scholar
  6. Fedosov DA, Karniadakis GE, Caswell B (2010) Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse poiseuille flow. J Chem Phys 132(14):144103CrossRefGoogle Scholar
  7. Haward S, Odell J (2003) Viscosity enhancement in non-newtonian flow of dilute polymer solutions through crystallographic porous media. Rheologica Acta 42(6):516–526CrossRefGoogle Scholar
  8. Haward S, Sharma V, Odell J (2011) Extensional opto-rheometry with biofluids and ultra-dilute polymer solutions. Soft Matter 7(21):9908–9921CrossRefGoogle Scholar
  9. Heo Y, Larson RG (2005) The scaling of zero-shear viscosities of semidilute polymer solutions with concentration. J Rheol 49(5):1117–1127CrossRefGoogle Scholar
  10. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL-Europhys Lett 19(3):155–160CrossRefGoogle Scholar
  11. Huang CC, Winkler RG, Sutmann G, Gompper G (2010) Semidilute polymer solutions at equilibrium and under shear flow. Macromolecules 43(23):10107–10116CrossRefGoogle Scholar
  12. Hur JS, Shaqfeh ESG, Babcock HP, Smith DE, Chu S (2001) Dynamics of dilute and semidilute DNA solutions in the start-up of shear flow. J Rheol 45(2):421–450CrossRefGoogle Scholar
  13. Kleßinger U, Bausch A (2013) Transient flow behavior of complex fluids in microfluidic channels. Microfluid Nanofluid. doi: 10.1007/s10404-013-1171-3
  14. Kong Y, Manke C, Madden W, Schlijper A (1997) Modeling the rheology of polymer solutions by dissipative particle dynamics. Tribol Lett 3(1):133–138CrossRefGoogle Scholar
  15. Ladoux B, Doyle PS (2000) Stretching tethered DNA chains in shear flow. EPL-Europhys Lett 52(5):511–517CrossRefGoogle Scholar
  16. Larson RG (2005) The rheology of dilute solutions of flexible polymers: progress and problems. J Rheol 49(1):1–70CrossRefGoogle Scholar
  17. Litvinov S, Ellero M, Hu X, Adams N (2010) A splitting scheme for highly dissipative smoothed particle dynamics. J Comput Phys 229(15):5457–5464CrossRefzbMATHGoogle Scholar
  18. Litvinov S, Hu X, Adams N (2011) Numerical simulation of tethered DNA in shear flow. J Phys Condens Matter 23(18):184118CrossRefGoogle Scholar
  19. Millan JA, Jiang WH, Laradji M, Wang YM (2007) Pressure driven flow of polymer solutions in nanoscale slit pores. J Chem Phys 126(12):124905CrossRefGoogle Scholar
  20. Perkins T, Smith D, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276(5321):2016CrossRefGoogle Scholar
  21. Pipe C, McKinley G (2009) Microfluidic rheometry. Mech Res Commun 36(1):110–120CrossRefGoogle Scholar
  22. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefzbMATHGoogle Scholar
  23. Prakash J (2002) Rouse chains with excluded volume interactions in steady simple shear flow. J Rheol 46:1353CrossRefGoogle Scholar
  24. Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, New YorkCrossRefGoogle Scholar
  25. Rouse P Jr (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272CrossRefGoogle Scholar
  26. Schroeder CM, Teixeira RE, Shaqfeh ESG, Chu S (2005) Dynamics of DNA in the flow-gradient plane of steady shear flow: observations and simulations. Macromolecules 38(5):1967–1978CrossRefGoogle Scholar
  27. Shaqfeh ESG (2005) The dynamics of single-molecule dna in flow. J Non-Newton Fluid Mech 130(1):1–28CrossRefGoogle Scholar
  28. Smith DE, Babcock HP, Chu S (1999) Single-polymer dynamics in steady shear flow. Science 283(5408):1724–1727CrossRefGoogle Scholar
  29. Symeonidis V, Karniadakis GE, Caswell B (2005) Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to DNA experiments. Phys Rev Lett 95(7):076001CrossRefGoogle Scholar
  30. Tanner R (2000) Engineering rheology, vol 52. Oxford University Press, USAGoogle Scholar
  31. Winkler RG (2006) Semiflexible polymers in shear flow. Phys Rev Lett 97(12):128301CrossRefGoogle Scholar
  32. Winkler R (2010) Conformational and rheological properties of semiflexible polymers in shear flow. J Chem Phys 133:164905CrossRefGoogle Scholar
  33. Zimm B (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24:269CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergey Litvinov
    • 1
    Email author
  • Xiangyu Hu
    • 1
  • Marco Ellero
    • 1
  • Nikolaus Adams
    • 1
  1. 1.Institute of Aerodynamics and Fluid MechanicsTechnische Universität MünchenGarchingGermany

Personalised recommendations