Advertisement

Microfluidics and Nanofluidics

, Volume 16, Issue 1–2, pp 237–246 | Cite as

Directed transport and location-designated rotation of nanowires using ac electric fields

  • Ke Chen
  • Nan Xiang
  • Yunlin Quan
  • Xiaolu Zhu
  • Dongke Sun
  • Hong Yi
  • Zhonghua NiEmail author
Research Paper

Abstract

The motion control of individual nanowires is essential for effective nanowire manipulation strategies. In this paper, we demonstrate a simple and general method to dynamically control the motion of a chemically untreated nanowire in a quadrupole electrode structure. The motion of single nanowires was determined by positive dielectrophoresis and orientational torque, which were induced by optionally exerting ac signals onto specific electrodes for regulating the electric field distribution in real time. A silver nanowire was guided to transform postures and transport directionally in a working regime of about 115 μm × 115 μm. The selected nanowire was then transported to a region of weak gradients and forced to rotate at the designated location subsequently. The behavior of the nanowires, including their posture, cornering time, linear displacement and location-designated rotation, was dynamically monitored and regulated. A simple analytical model was developed to derive the driving forces and torques on the nanowire.

Keywords

Nanowires Directed transport Location-designated rotation 

Notes

Acknowledgments

This work was supported by Major Program of the National Natural Science Foundation of China (91023024), National 973 Program of China (2011CB707601), The National Natural Science Foundation of China (51145009), New Century Elitist Program by Ministry of Education of China (NCET-07-0180).

Supplementary material

Supplementary material 1 (MPG 914 kb)

Supplementary material 2 (MPG 4038 kb)

Supplementary material 3 (MPG 5664 kb)

References

  1. Agarwal R, Ladavac K, Roichman Y, Yu GH, Lieber CM, Grier DG (2005) Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13(22):8906–8912CrossRefGoogle Scholar
  2. Boote JJ, Evans SD (2005) Dielectrophoretic manipulation and electrical characterization of gold nanowires. Nanotechnology 16(9):1500–1505CrossRefGoogle Scholar
  3. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292CrossRefGoogle Scholar
  4. Dong LF, Bush J, Chirayos V, Solanki R, Jiao J, Ono Y, Conley JF, Ulrich BD (2005) Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett 5(10):2112–2115CrossRefGoogle Scholar
  5. Edwards B, Mayer TS, Bhiladvala RB (2006) Synchronous electrorotation of nanowires in fluid. Nano Lett 6(4):626–632CrossRefGoogle Scholar
  6. Evoy S, DiLello N, Deshpande V, Narayanan A, Liu H, Riegelman M, Martin BR, Hailer B, Bradley JC, Weiss W, Mayer TS, Gogotsi Y, Bau HH, Mallouk TE, Raman S (2004) Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron Eng 75(1):31–42CrossRefGoogle Scholar
  7. Fan DL, Zhu FQ, Cammarata RC, Chien CL (2004) Manipulation of nanowires in suspension by ac electric fields. Appl Phys Lett 85(18):4175–4177CrossRefGoogle Scholar
  8. Fan DL, Zhu FQ, Cammarata RC, Chien CL (2005) Controllable high-speed rotation of nanowires. Phys Rev Lett 94(24):247208CrossRefGoogle Scholar
  9. Fan DL, Cammarata RC, Chien CL (2008a) Precision transport and assembling of nanowires in suspension by electric fields. Appl Phys Lett 92(9):093115CrossRefGoogle Scholar
  10. Fan ZY, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, Javey A (2008b) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8(1):20–25CrossRefGoogle Scholar
  11. Fan DL, Yin ZZ, Cheong R, Zhu FQ, Cammarata RC, Chien CL, Levchenko A (2010) Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat Nanotechnol 5(7):545–551CrossRefGoogle Scholar
  12. Freer EM, Grachev O, Duan XF, Martin S, Stumbo DP (2010) High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol 5(7):525–530CrossRefGoogle Scholar
  13. Hangarter CM, Myung NV (2005) Magnetic alignment of nanowires. Chem Mater 17(6):1320–1324CrossRefGoogle Scholar
  14. Jamshidi A (2009) Optoelectronic manipulation, assembly, and patterning of nanoparticles. University of California, BerkeleyGoogle Scholar
  15. Jamshidi A, Pauzauskie PJ, Schuck PJ, Ohta AT, Chiou PY, Chou J, Yang PD, Wu MC (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2(2):85–89CrossRefGoogle Scholar
  16. Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Keshoju K, Xing H, Sun L (2007) Magnetic field driven nanowire rotation in suspension. Appl Phys Lett 91(12):123114CrossRefGoogle Scholar
  18. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRefGoogle Scholar
  19. Lee SH, Lee HJ, Ino K, Shiku H, Yao T, Matsue T (2009) Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires. J Phys Chem C 113(45):19376–19381CrossRefGoogle Scholar
  20. Liu YL, Chung JH, Liu WK, Ruoff RS (2006) Dielectrophoretic assembly of nanowires. J Phys Chem B 110(29):14098–14106CrossRefGoogle Scholar
  21. Marczak M, Hourlier D, Melin T, Adamowicz L, Diesinger H (2010) Frequency dependent rotation and translation of nanowires in liquid environment. Appl Phys Lett 96(23):233502CrossRefGoogle Scholar
  22. Molhave K, Wich T, Kortschack A, Boggild P (2006) Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17(10):2434–2441CrossRefGoogle Scholar
  23. Morgan H, Green NG (2002) AC electrokinetics:colloids and nanoparticles. Research Studies Press, PhiladelphiaGoogle Scholar
  24. Pauzauskie PJ, Radenovic A, Trepagnier E, Shroff H, Yang PD, Liphardt J (2006) Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater 5(2):97–101CrossRefGoogle Scholar
  25. Pevzner A, Engel Y, Elnathan R, Ducobni T, Ben-Ishai M, Reddy K, Shpaisman N, Tsukernik A, Oksman M, Patolsky F (2010) Knocking down highly-ordered large-scale nanowire arrays. Nano Lett 10(4):1202–1208CrossRefGoogle Scholar
  26. Raychaudhuri S, Dayeh SA, Wang DL, Yu ET (2009) Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett 9(6):2260–2266CrossRefGoogle Scholar
  27. Sherman FS (1990) Viscous Flow. Mcgraw Hill, New YorkzbMATHGoogle Scholar
  28. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399CrossRefGoogle Scholar
  29. Sosnowchik BD, Chang J, Lin LW (2010) Pick, break, and placement of one-dimensional nanostructures for direct assembly and integration. Appl Phys Lett 96(15):153101CrossRefGoogle Scholar
  30. Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3(9):1229–1233CrossRefGoogle Scholar
  31. Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246CrossRefGoogle Scholar
  32. Wiley B, Sun YG, Mayers B, Xia YN (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11(2):454–463CrossRefGoogle Scholar
  33. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRefGoogle Scholar
  34. Xie P, Xiong QH, Fang Y, Qing Q, Lieber CM (2012) Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat Nanotechnol 7(2):119–125CrossRefGoogle Scholar
  35. Xu F, Durham JW, Wiley BJ, Zhu Y (2011) Strain-release assembly of nanowires on stretchable substrates. ACS Nano 5(2):1556–1563CrossRefGoogle Scholar
  36. Yan Z, Jureller JE, Sweet J, Guffey MJ, Pelton M, Scherer NF (2012) Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett 12(10):5155–5161CrossRefGoogle Scholar
  37. Zhang L, Petit T, Lu Y, Kratochvil BE, Peyer KE, Pei R, Lou J, Nelson BJ (2010) Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4(10):6228–6234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ke Chen
    • 1
    • 2
  • Nan Xiang
    • 1
    • 2
  • Yunlin Quan
    • 1
    • 2
  • Xiaolu Zhu
    • 1
    • 2
  • Dongke Sun
    • 1
    • 2
  • Hong Yi
    • 1
    • 2
  • Zhonghua Ni
    • 1
    • 2
    Email author
  1. 1.School of Mechanical EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical InstrumentsSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations