Microfluidics and Nanofluidics

, Volume 15, Issue 5, pp 647–659 | Cite as

Software-programmable continuous-flow multi-purpose lab-on-a-chip

  • Ahmed M. Amin
  • Raviraj Thakur
  • Seth Madren
  • Han-Sheng Chuang
  • Mithuna Thottethodi
  • T. N. Vijaykumar
  • Steven T. Wereley
  • Stephen C. Jacobson
Research Paper

Abstract

Current lab-on-a-chip (LoC) devices are assay-specific and are custom-built for each single experiment. Performing an experiment requires scientists or engineers to go through the time-consuming process of designing, fabricating, and testing a chip before conducting the actual experiment. This prolonged cycle can take months to complete, increasing effort and cost and reducing productivity. Similarly, minor modifications to an assay protocol re-incur the overheads of the design cycle. In this paper, we develop a multi-purpose, software-programmableLab-on-a-Chip (SPLoC), where the user simply writes or downloads a program for each experiment. We describe the components necessary to realize the SPLoC, which include a high-level programming language, an abstract instruction set, a runtime and control system, and a microfluidic device. We describe two key features of our high-level language compiler, and describe a novel variable-volume variable-ratio mixer. Finally, we demonstrate our SPLoC on four diverse, real-world assays.

References

  1. Amin AM (2011) A Programmable architecture and compiler for microfluidics. Doctoral Dissertation, Purdue University, West LafayetteGoogle Scholar
  2. Amin AM, Thottethodi M, Vijaykumar TN, Wereley ST, Jacobson SC (2007a) AquaCore: A programmable architecture for microfluidics. In: Proceedings of the 34th international symposium on computer architecture (ISCA-2007), June 2007 pp 254–265Google Scholar
  3. Amin AM, Thottethodi M, Vijaykumar TN, Wereley ST, Jacobson SC (2007b) Aquacore: A general-purpose architecture for programmable microfluidics. In: Proceedings of the 11th international conference on miniaturized systems for chemistry and life sciences (μTAS 2007), October 2007Google Scholar
  4. Amin AM, Thottethodi M, Vijaykumar TN, Wereley ST, Jacobson SC (2008) Automatic volume management for programmable microfluidics. In: Proceedings of the ACM SIGPLAN conference on programming language design and implementation (PLDI-2008), June 2008 pp 56–67Google Scholar
  5. Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sens Actuat A 58(1):13–18. doi:10.1016/s0924-4247(97)80219-1 CrossRefGoogle Scholar
  6. Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) An integrated nanoliter DNA analysis device. Science 282(5388):484–487. doi:10.1126/science.282.5388.484 CrossRefGoogle Scholar
  7. Chuang HS, Wereley ST (2009) Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors. J Micromech Microeng 19(4):045010. doi:10.1088/0960-1317/19/4/045010 CrossRefGoogle Scholar
  8. Chuang HS, Amin AM, Wereley ST, Thottethodi M, Vijaykumar TN, Jacobson SC (2008) Polydimethylsiloxane (PDMS) peristaltic pump characterization for programmable lab-on-a-chip applications. In: Proceedings of the 12th international conference on miniaturized systems for chemistry and life sciences 12Google Scholar
  9. Chuang HS, Jacobson S, Wereley ST (2010) A diffusion-based cyclic particle extractor. Microfluid Nanofluid 9(4):743–753. doi:10.1007/s10404-010-0589-0 CrossRefGoogle Scholar
  10. Chuang HS, Raviraj T, Wereley ST (2012) Characterizations of gas purge valves for liquid alignment and gas removal in a microfluidic chip. J Micromech Microeng 22(8):085023. doi:10.1088/0960-1317/22/8/085023 CrossRefGoogle Scholar
  11. Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9(3):417–426. doi:10.1039/B806803H CrossRefGoogle Scholar
  12. Cooper K, Torczon L (2004) Engineering a compiler. Morgan Kaufmann, San FranciscoGoogle Scholar
  13. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi:10.1021/ac980656z CrossRefGoogle Scholar
  14. Fidalgo LM, Maerkl SJ (2011) A software-programmable microfluidic device for automated biology. Lab Chip 11(9):1612–1619. doi:10.1039/C0LC00537A CrossRefGoogle Scholar
  15. Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuator B-Chem 89(3):315–323. doi:10.1016/S0925-4005(02)00468-9 CrossRefGoogle Scholar
  16. Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Microchip device for performing enzyme assays. Anal Chem 69(17):3407–3412. doi:10.1021/ac970192p CrossRefGoogle Scholar
  17. Handique K, Burns MA (2001) Mathematical modeling of drop mixing in a slit-type microchannel. J Micromech Microeng 11(5):548. doi:10.1088/0960-1317/11/5/316 CrossRefGoogle Scholar
  18. Hasselbrink EF, Shepodd TJ, Rehm JE (2002) High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths. Anal Chem 74(19):4913–4918. doi:10.1021/ac025761u CrossRefGoogle Scholar
  19. Hosokawa K, Fujii T, Endo I (1999) Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 71(20):4781–4785. doi:10.1021/ac990571d CrossRefGoogle Scholar
  20. Jokerst JV, Jacobson JW, Bhagwandin BD, Floriano PN, Christodoulides N, McDevitt JT (2010) Programmable nano-bio-chip sensors: analytical meets clinical. Anal Chem 82(5):1571–1579. doi:10.1021/ac901743u CrossRefGoogle Scholar
  21. Kapishnikov S, Kantsler V, Steinberg V (2006) Continuous particle size separation and size sorting using ultrasound in a microchannel. J Stat Mech. doi:10.1088/1742-5468/2006/01/P01012 Google Scholar
  22. Madren SM, Hoffman MD, Brown PJB, Kysela DT, Brun YV, Jacobson SC (2012) Microfluidic device for automated synchronization of bacterial cells. Anal Chem 84(20):8571–8578. doi:10.1021/ac301565g CrossRefGoogle Scholar
  23. Nguyen N, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, NorwoodMATHGoogle Scholar
  24. Schultz BE, Misialek S, Wu J, Tang J, Conn MT, Tahilramani R, Wong L (2004) Kinetics and comparative reactivity of human class I and class IIb histone deacetylases. Biochem 43(34):11083–11091. doi:10.1021/bi0494471 CrossRefGoogle Scholar
  25. Shaikh KA, Ryu KS, Goluch ED, Nam J-M, Liu J, Thaxton CS, Chiesl TN, Barron AE, Lu Y, Mirkin CA, Liu C (2005) A modular microfluidic architecture for integrated biochemical analysis. PNAS 102(28):9745–9750. doi:10.1073/pnas.0504082102 CrossRefGoogle Scholar
  26. Su F, Chakrabarty K, Fair RB (2006) Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE transactions on computer-aided design of integrated circuits and systems, 25 (2) pp 211–223. doi:10.1109/TCAD.2005.855956
  27. Thies W, Urban JP, Thorsen T, Amarasinghe S (2007) Abstraction layers for scalable microfluidic biocomputing. Nat Comp. doi:10.1007/s11047-006-9032-6 Google Scholar
  28. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113 CrossRefGoogle Scholar
  29. Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6(1):96–104. doi:10.1039/B510127A CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ahmed M. Amin
    • 1
    • 2
  • Raviraj Thakur
    • 3
  • Seth Madren
    • 4
  • Han-Sheng Chuang
    • 5
  • Mithuna Thottethodi
    • 2
  • T. N. Vijaykumar
    • 2
  • Steven T. Wereley
    • 3
  • Stephen C. Jacobson
    • 4
  1. 1.Microfluidic InnovationsWest LafayetteUSA
  2. 2.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Birck Nanotechnology Center, School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Department of ChemistryIndiana UniversityBloomingtonUSA
  5. 5.Department of Biomedical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations