Advertisement

Microfluidics and Nanofluidics

, Volume 15, Issue 5, pp 625–635 | Cite as

Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day

  • Ansgar Waldbaur
  • Bernardo Carneiro
  • Paul Hettich
  • Elisabeth Wilhelm
  • Bastian E. Rapp
Research Paper

Abstract

In this paper, we introduce computer-aided microfluidics (CAMF), a process that allows the creation of complex microfluidic structures from their concept to the actual chip within a day. During design and testing of new microfluidic systems, rapid and frequent design modifications have to be carried out. For this purpose, a device using maskless projection lithography based on a digital mirror device (DMD) has been developed. Digital mask layouts may be created using any graphics program (Microsoft Paint, Adobe Photoshop) and can be used as such by the custom-written control software of the system. However, we suggest using another approach: direct importing of three-dimensional digital computer-aided design (CAD) models from which mask information can be directly parsed. This process is advantageous as commercial 3D-CAD systems allow the rapid generation of static or parameterized models which can be used for computerized analyses like, e.g., flow simulation. After model validation, the mask information is extracted from these models and directly used by the lithography device. A chip or replication master is then created by means of lithography using curable monomers or resists as, e.g., Accura 60 or SU-8. With CAMF, the whole process from digital 3D model creation to actually running the experiment can be done within a day.

Keywords

Microfluidics Computer aided Projection lithography Chip manufacturing Rapid prototyping 

Notes

Acknowledgments

This work was supported in part by the ‘Concept for the Future’ of Karlsruhe Institute of Technology (KIT) within the framework of the German Excellence Initiative.

Supplementary material

10404_2013_1177_MOESM1_ESM.pdf (314 kb)
Supplementary material 1 (PDF 314 kb)
10404_2013_1177_MOESM2_ESM.stp (1 mb)
Supplementary material 2 (STP 1,066 kb)
10404_2013_1177_MOESM3_ESM.stp (4.2 mb)
Supplementary material 3 (STP 4,273 kb)

References

  1. Berthier E, Young EWK, Beebe D (2012) Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12(7):1224–1237CrossRefGoogle Scholar
  2. Cheng YL, Lee ML (2009) Development of dynamic masking rapid prototyping system for application in tissue engineering. Rapid Prototyp J 15(1):29–41. doi: 10.1108/13552540910925045 CrossRefGoogle Scholar
  3. Choi JW, Wicker R, Lee SH, Choi KH, Ha CS, Chung I (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15–16):5494–5503. doi: 10.1016/j.jmatprotec.2009.05.004 CrossRefGoogle Scholar
  4. de Mello A (2002) Plastic fantastic? Lab Chip 2(2):31N–36N. doi: 10.1039/b203828p CrossRefGoogle Scholar
  5. Douglass MR (1998) Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD). In: Reliability Physics Symposium Proceedings, 36th Annual. 1998 IEEE International, March 31–April 2 1998 pp 9–16. doi: 10.1109/relphy.1998.670436
  6. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi: 10.1021/ac980656z CrossRefGoogle Scholar
  7. Haubert K, Drier T, Beebe D (2006) PDMS bonding by means of a portable, low-cost corona system. Lab Chip 6(12):1548–1549. doi: 10.1039/b610567j CrossRefGoogle Scholar
  8. Hong CC, Choi JW, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113. doi: 10.1039/b305892a CrossRefGoogle Scholar
  9. Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9(1):76–81. doi: 10.1109/84.825780 CrossRefGoogle Scholar
  10. Kattipparambil Rajan D, Lekkala J (2010) A maskless exposure device for rapid photolithographic prototyping of sensor and microstructure layouts. Proc Eng 5:331–334. doi: 10.1016/j.proeng.2010.09.115 CrossRefGoogle Scholar
  11. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57CrossRefGoogle Scholar
  12. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L (2012) Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12(18):3267–3271CrossRefGoogle Scholar
  13. Lee K, Kim C, Ahn B, Panchapakesan R, Full AR, Nordee L, Kang JY, Oh KW (2009) Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9(5):709–717. doi: 10.1039/b813582g CrossRefGoogle Scholar
  14. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576. doi: 10.1002/elps.200305584 CrossRefGoogle Scholar
  15. Song YT, Noguchi M, Takatsuki K, Sekiguchi T, Mizuno J, Funatsu T, Shoji S, Tsunoda M (2012) Integration of pillar array columns into a gradient elution system for pressure-driven liquid chromatography. Anal Chem 84(11):4739–4745. doi: 10.1021/ac3001836 CrossRefGoogle Scholar
  16. Steigert J, Haeberle S, Brenner T, Mueller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Ruehe J, Zengerle R, Ducree J (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17(2):333–341. doi: 10.1088/0960-1317/17/2/020 CrossRefGoogle Scholar
  17. Tan A, Rodgers K, Murrihy JP, O’Mathuna C, Glennon JD (2001) Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. Lab Chip 1(1):7–9CrossRefGoogle Scholar
  18. Totsu K, Fujishiro K, Tanaka S, Esashi M (2006) Fabrication of three-dimensional microstructure using maskless gray-scale lithography. Sens Actuators A-Phys 130:387–392. doi: 10.1016/j.sna.2005.12.008 CrossRefGoogle Scholar
  19. Waldbaur A, Rapp H, Laenge K, Rapp BE (2011) Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3(12):2681–2716. doi: 10.1039/c1ay05253e CrossRefGoogle Scholar
  20. Waldbaur A, Waterkotte B, Schmitz K, Rapp BE (2012) Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. Small 8(10):1570–1578. doi: 10.1002/smll.201102163 CrossRefGoogle Scholar
  21. Yang H, Ratchev S, Turitto M, Segal J (2009) Rapid manufacturing of non-assembly complex micro-devices by microstereolithography. Tsinghua Sci Technol 14(Supplement 1):164–167. doi: 10.1016/s1007-0214(09)70086-0 CrossRefGoogle Scholar
  22. Zhao SW, Cong HL, Pan TR (2009) Direct projection on dry-film photoresist (DP2): do-it-yourself three-dimensional polymer microfluidics. Lab Chip 9(8):1128–1132. doi: 10.1039/b817925e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ansgar Waldbaur
    • 1
  • Bernardo Carneiro
    • 1
  • Paul Hettich
    • 1
  • Elisabeth Wilhelm
    • 1
  • Bastian E. Rapp
    • 1
  1. 1.Institute of Microstructure Technology (IMT)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations