Advertisement

Microfluidics and Nanofluidics

, Volume 15, Issue 4, pp 451–465 | Cite as

Flow-induced particle migration in microchannels for improved microfiltration processes

  • A. M. C. van Dinther
  • C. G. P. H. Schroën
  • A. Imhof
  • H. M. Vollebregt
  • R. M. Boom
Research Paper

Abstract

Microchannels can be used to induce migration phenomena of micron sized particles in a fluid. Separation processes, like microfiltration, could benefit from particle migration phenomena. Currently, microfiltration is designed around maximum flux, resulting in accumulation of particles in and on the membrane. In this paper it is shown that starting the design at the particle level will result in a new microfiltration process. The behaviour of suspensions between 9 and 38 volume% was studied by confocal scanning laser microscopy; migration as a result of shear-induced diffusion was observed in a rectangular microchannel with nonporous walls. Particles segregated on size within the first 10 cm of the channel. To illustrate this, at 20 volume% of small (1.53 μm) and large (2.65 μm) particles each, the larger particles migrated to the middle of the channel, while the small particles had high concentrations near the walls. The small particles could then be collected from their position close to the permeable walls, e.g. membranes, where the pore size of the membrane is no longer the determining factor for separation. Guidelines for using this phenomenon in a microfiltration process were derived and the selectivity of the process was experimentally evaluated. The small droplets could be removed from the mixtures with a membrane having pores 3.7 times larger than the droplets, thereby minimizing accumulation of droplets in and on the membrane. As long as the process conditions are chosen appropriately, no droplet deposition takes place and high fluxes (1.7 × 103 L h−1 m² bar−1) can be maintained.

Keywords

Shear-induced particle migration Microchannel Fractionation Microfiltration Confocal scanning laser microscopy 

List of symbols

a

Particle radius (m)

b

Fitting parameter (−)

c

Fitting parameter (−)

dL

Diameter large emulsion droplets (m)

dS

Diameter small emulsion droplets (m)

D

Stokes–Einstein diffusivity (m2/s)

Dφ

Dimensionless diffusion coefficient (−)

Dshear

Shear-induced diffusion coefficient (m²/s)

EL

Dimensionless evolution length (−)

Ep

Evolution parameter (−)

Epfit

Fitted evolution parameter (−)

Epfit norm

Normalized fitted evolution parameter (−)

H

Half the channel height (m)

k

Boltzmann constant (J/K)

K

Constant related to shear-induced diffusion (−)

L

Channel length (m)

Pe

Dimensionless Péclet number relating diffusive to convective processes (−)

PeBrown

Dimensionless Péclet number relating Brownian to hydrodynamic forces (−)

Peshear

Dimensionless Péclet number relating shear-induced diffusive to hydrodynamic forces (−)

Rec

Dimensionless channel Reynolds number (−)

Rep

Dimensionless particle Reynolds number (−)

t

Time (s)

T

Temperature (K)

\( \bar{\nu } \)

Average velocity (m/s)

w

Channel width (m)

x

Distance in the channel parallel to the flow (m)

X

Dimensionless distance from the inlet (−)

y

Average distance travelled by the particles perpendicular to the flow (m)

z

Position of particle relative to reference wall (m)

Greek symbols

α

Selectivity of membrane process (−)

\( \dot{\gamma } \)

Shear rate (1/s)

η

Viscosity of the solution (Pa s)

η(φ)

Viscosity as a function of the solid volume fraction of the suspension (Pa·s)

λ

Constant related to shear-induced diffusion (−)

ρ

Density of the suspension (kg/m³)

ρoil

Density of the oil phase (kg/m³)

τcon

Time scale of convection (s)

τdif

Time scale for migration (s)

φ

Solid volume fraction of the suspension (−)

φL

Solid volume fraction of large particles (−)

φL,b

Solid volume fraction of the large particles in the bulk (−)

φL,p

Solid volume fraction of the large particles in the permeate (−)

φS

Solid volume fraction of small particles (−)

φS,b

Solid volume fraction of the small particles in the bulk (−)

φS,p

Solid volume fraction of the small particles in the permeate (−)

φtot

Solid volume fraction of the bidisperse suspension (−)

φ (x,z)

Concentration profile of particles at a certain distance in the channel (−)

φref(z)

Concentration profile at the inlet (−)

\( \left\langle {\varphi \left( {x,z} \right)} \right\rangle_{z} \)

Cross-sectional average volume fraction (−)

\( \left\langle {\varphi_{\text{ref}} \left( z \right)} \right\rangle_{z} \)

Cross-sectional average volume fraction at the inlet (−)

Notes

Acknowledgments

The authors would like to thank J.C.P. Stiefelhagen and P. Helfferich of the Soft Condensed Matter Group at the University of Utrecht for particle synthesis and technical support with the CSLM. Support for this work was provided by the Institute of Sustainable Process Technology, Pentair X-flow, FrieslandCampina and Royal Cosun. Special thanks to the people of the ShIFT team and the mechanical workshop of Wageningen University.

References

  1. Abbasi M, Sebzari MR, Salahi A, Mirza B (2011) Modelling of membrane fouling and flux decline in microfiltration of oily wastewater using ceramic membranes. Chem Eng Commun 199(1):78–93. doi: 10.1080/00986445.2011.570391 CrossRefGoogle Scholar
  2. Abbott JR, Tetlow N, Graham AL, Altobelli SA, Fukushima E, Mondy LA, Stephens TS (1991) Experimental-observations of particle migration in concentrated suspensions—Couette-flow. J Rheol 35(5):773–795. doi: 10.1122/1.550157 CrossRefGoogle Scholar
  3. Ackerson BJ (1991) Shear induced order in equilibrium colloidal liquids. Phys A 174(1):15–30. doi: 10.1103/PhysRevLett.61.1033 CrossRefGoogle Scholar
  4. Acrivos A, Mauri R, Fan X (1993) Shear-induced resuspension in a couette device. Int J Multiph Flow 19(5):797–802. doi: 10.1016/0301-9322(93)90043-T CrossRefzbMATHGoogle Scholar
  5. Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87. doi: 10.1017/S0022112098003474 CrossRefzbMATHGoogle Scholar
  6. Belfort G (1989) Fluid mechanics in membrane filtration: recent developments. J Membr Sci 40(2):123–147. doi: 10.1016/0376-7388(89)89001-5 CrossRefGoogle Scholar
  7. Belfort G, Davis RH, Zydney AL (1994) The behavior of suspensions and macromolecular solutions in cross-flow microfiltration. J Membr Sci 96(1–2):1–58. doi: 10.1016/0376-7388(94)00119-7 CrossRefGoogle Scholar
  8. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluid 7(2):217–226. doi: 10.1007/s10404-008-0377-2 CrossRefGoogle Scholar
  9. Bhagat A, Bow H, Hou H, Tan S, Han J, Lim C (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014. doi: 10.1007/s11517-010-0611-4 CrossRefGoogle Scholar
  10. Bosma G, Pathmamanoharan C, de Hoog EHA, Kegel WK, van Blaaderen A, Lekkerkerker HNW (2002) Preparation of monodisperse, fluorescent PMMA–latex colloids by dispersion polymerization. J Colloid Interface Sci 245(2):292–300. doi: 10.1006/jcis.2001.7986 CrossRefGoogle Scholar
  11. Breedveld V, van den Ende D, Jongschaap R, Mellema J (2001) Shear-induced diffusion and rheology of noncolloidal suspensions: time scales and particle displacements. J Chem Phys 114(13):5923–5936. doi: 10.1063/1.1355315 CrossRefGoogle Scholar
  12. Chow AW, Sinton SW, Iwamiya JH, Stephens TS (1994) Shear-induced particle migration in couette and parallel-plate viscometers—Nmr imaging and stress measurements. Phys Fluids 6(8):2561–2576. doi: 10.1063/1.868147 CrossRefGoogle Scholar
  13. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046. doi: 10.1039/B912547G CrossRefGoogle Scholar
  14. Eckstein EC, Bailey DG, Shapiro AH (1977) Self-diffusion of particles in shear-flow of a suspension. J Fluid Mech 79(1):191–208. doi: 10.1017/S0022112077000111 CrossRefGoogle Scholar
  15. El Rayess Y, Albasi C, Bacchin P, Taillandier P, Raynal J, Mietton-Peuchot M, Devatine A (2011) Cross-flow microfiltration applied to oenology: a review. J Membr Sci 382(1–2):1–19. doi: 10.1016/j.memsci.2011.08.008 CrossRefGoogle Scholar
  16. Eloot S, De Bisschop F, Verdonck P (2004) Experimental evaluation of the migration of spherical particles in three-dimensional Poiseuille flow. Phys Fluids 16(7):2282–2293. doi: 10.1063/1.1723465 CrossRefGoogle Scholar
  17. Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Membr Sci 100(3):259–272. doi: 10.1016/0376-7388(94)00265-Z CrossRefGoogle Scholar
  18. Fillaudeau L, Carrere H (2002) Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes. J Membr Sci 196(1):39–57. doi: 10.1016/S0376-7388(01)00568-3 CrossRefGoogle Scholar
  19. Graham AL, Altobelli SA, Fukushima E, Mondy LA, Stephens TS (1991) Nmr imaging of shear-induced diffusion and structure in concentrated suspensions undergoing couette-flow. J Rheol 35(1):191–201. doi: 10.1122/1.550227 CrossRefGoogle Scholar
  20. Kromkamp J (2005) Particle separation and fractionation by microfiltration. Wageningen University, WageningenGoogle Scholar
  21. Kromkamp J, Faber F, Schroen K, Boom R (2006) Effects of particle size segregation on crossflow microfiltration performance: control mechanism for concentration polarisation and particle fractionation. J Membr Sci 268(2):189–197. doi: 10.1016/j.memsci.2005.06.012 CrossRefGoogle Scholar
  22. Leighton D, Acrivos A (1987a) Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J Fluid Mech 177:109–131. doi: 10.1017/S0022112087000880 CrossRefGoogle Scholar
  23. Leighton D, Acrivos A (1987b) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439. doi: 10.1017/S0022112087002155 CrossRefGoogle Scholar
  24. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217. doi: 10.1039/B915999C CrossRefGoogle Scholar
  25. Lyon MK, Leal LG (1998a) An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J Fluid Mech 363:25–56. doi: 10.1017/S0022112098008817 CrossRefzbMATHGoogle Scholar
  26. Lyon MK, Leal LG (1998b) An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 2. Bidisperse systems. J Fluid Mech 363:57–77. doi: 10.1017/S0022112098008829 CrossRefzbMATHGoogle Scholar
  27. McLaughlin JB (1993) The lift on a small sphere in wall-bounded linear shear flows. J Fluid Mech 246:249–265. doi: 10.1017/S0022112093000114 CrossRefzbMATHGoogle Scholar
  28. Moraru C, Ulrich Schrader E (2009) Applications of membrane separation in the brewing industry. In: Pabby AK, Rizvi SSH, Sastre AM (eds) Handbook of Membrane Separations. CRC Press, Taylor & Francis, pp 553–579. doi: 10.1201/9781420009484.ch20
  29. Nandi BK, Uppaluri R, Purkait MK (2011) Identification of optimal membrane morphological parameters during microfiltration of mosambi juice using low cost ceramic membranes. LWT Food Sci Technol 44(1):214–223. doi: 10.1016/j.lwt.2010.06.026 CrossRefGoogle Scholar
  30. Nott PR, Brady JF (1994) Pressure-driven flow of suspensions—Simulation and theory. J Fluid Mech 275:157–199. doi: 10.1017/S0022112094002326 CrossRefzbMATHGoogle Scholar
  31. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659. doi: 10.1039/B712784G CrossRefGoogle Scholar
  32. Park J-S, Song S-H, Jung H-I (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9(7):939–948. doi: 10.1039/B813952K CrossRefGoogle Scholar
  33. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids a Fluid Dyn 4(1):30–40. doi: 10.1063/1.858498 CrossRefzbMATHGoogle Scholar
  34. Piron E, Rene F, Latrille E (1995) A cross-flow microfiltration model-based on integration of the mass-transport equation. J Membr Sci 108(1–2):57–70. doi: 10.1016/0376-7388(95)00141-4 CrossRefGoogle Scholar
  35. Rezaei H, Ashtiani FZ, Fouladitajar A (2011) Effects of operating parameters on fouling mechanism and membrane flux in cross-flow microfiltration of whey. Desalination 274(1–3):262–271. doi: 10.1016/j.desal.2011.02.015 CrossRefGoogle Scholar
  36. Semwogerere D, Weeks ER (2008) Shear-induced particle migration in binary colloidal suspensions. Phys Fluids 20(4):0433061–0433067. doi: 10.1063/1.2907378 CrossRefGoogle Scholar
  37. Semwogerere D, Morris JF, Weeks ER (2007) Development of particle migration in pressure-driven flow of a Brownian suspension. J Fluid Mech 581: 437–451. doi: 10.1017/S0022112007006088 Google Scholar
  38. Shah RK, London AL (1978) Laminar flow forced convection in ducts : a source book for compact heat exchanger analytical data, vol 1. Advances in Heat Transfer: Supplement. Academic Press, New YorkGoogle Scholar
  39. Shakib-Manesh A, Raiskinmaki P, Koponen A, Kataja M, Timonen J (2002) Shear stress in a Couette flow of liquid-particle suspensions. J Stat Phys 107(1–2):67–84. doi: 10.1023/A:1014598201975 CrossRefzbMATHGoogle Scholar
  40. Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AIChE J 47(5):1077–1087. doi: 10.1002/aic.690470514 CrossRefGoogle Scholar
  41. Tan KW (2003) Experimental investigation of shear-induced particle migration in steady-state isothermic extrusion. J Soc Rheol 31(3):165. doi: 10.1678/rheology.31.165 CrossRefGoogle Scholar
  42. Tetlow N, Graham AL, Ingber MS, Subia SR, Mondy LA, Altobelli SA (1998) Particle migration in a couette apparatus: experiment and modeling. J Rheol 42(2):307–327. doi: 10.1122/1.550954 CrossRefGoogle Scholar
  43. van Dinther AMC, Schroën CGPH, Boom RM (2009) Design of Microsieves and Microsieve Processes for Suspension Fractionation. In: Mueller A, Guieysse B, Sarkar A (eds) New Membranes and Advanced Materials for Wastewater Treatment, vol 1022. ACS Symposium Series. American Chemical Society, pp 137–149. doi: 10.1021/bk-2009-1022.ch009
  44. van Dinther AMC, Schroën CGPH, Boom RM (2011) High-flux membrane separation using fluid skimming dominated convective fluid flow. J Membr Sci 371(1–2):20–27. doi: 10.1016/j.memsci.2011.01.013 CrossRefGoogle Scholar
  45. van Rijn CJM (2004) Nano and micro engineered membrane technology. Membrane science and technology series, vol 10, 1st edn. Elsevier, Amsterdam; Boston. doi: 10.1016/S0927-5193(04)80017-2
  46. Vollebregt HM, van der Sman RGM, Boom RM (2010) Suspension flow modelling in particle migration and microfiltration. Soft Matter 6(24):6052–6064. doi: 10.1039/C0SM00217H CrossRefGoogle Scholar
  47. Weigl BH, Yager P (1999) Microfluidic Diffusion-Based Separation and Detection. Science 283(5400):346–347. doi: 10.1126/science.283.5400.346 CrossRefGoogle Scholar
  48. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. doi: 10.1038/nature05058 CrossRefGoogle Scholar
  49. Yu ZS, Shao XM, Tanner R (2007) Dynamic simulation of shear-induced particle migration in a two-dimensional circular couette device. Chin J Chem Eng 15(3):333–338. doi: 10.1016/S1004-9541(07)60089-5 CrossRefGoogle Scholar
  50. Zeng L, Balanchandar S, Fischer P (2005) Wall-induced forces on a rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25. doi: 10.1017/S0022112005004738 CrossRefzbMATHGoogle Scholar
  51. Zhao C, Cheng X (2011) Microfluidic separation of viruses from blood cells based on intrinsic transport processes. Biomicrofluidics 5(3):032004. doi: 10.1063/1.3609262 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. M. C. van Dinther
    • 1
  • C. G. P. H. Schroën
    • 1
  • A. Imhof
    • 2
  • H. M. Vollebregt
    • 1
    • 3
  • R. M. Boom
    • 1
  1. 1.Food Process Engineering Laboratory, Department of Agrotechnology and Food SciencesWageningen UniversityWageningenThe Netherlands
  2. 2.Soft Condensed Matter, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  3. 3.Wageningen UR Food and Biobased ResearchWageningenThe Netherlands

Personalised recommendations