Advertisement

Microfluidics and Nanofluidics

, Volume 15, Issue 3, pp 327–336 | Cite as

Droplet transport by electrowetting: lets get rough!

  • Florian Lapierre
  • Martin Jonsson-Niedziolka
  • Yannick Coffinier
  • Rabah Boukherroub
  • Vincent Thomy
Research Paper

Abstract

Since the pioneering works of Wenzel and Cassie Baxter in the 1930s, and now with the trivialization of the micro- and nanotechnology facilities, superhydrophobic surfaces have been announced as potentially amazing components for applications such as fluidic, optical, electronic, or thermal devices. In this paper, we show that using superhydrophobic surfaces in digital microfluidic devices could solve some usual limitations or enhance their performances. Thus, we investigate a specific monophasic (air environment) microfluidic device based on electrowetting integrating either a hydrophobic or a superhydrophobic surface as a counter-electrode. The droplet transport using a superhydrophobic surface compared with a classical hydrophobic system led to some original results. Characterization of the dynamic contact angle and the droplet shape allows us to get new insight of the fluid dynamics. Among the remarkable properties reported, a 30 % lower applied voltage, a 30 % higher average speed with a maximum instantaneous speed of 460 mm/s have been measured. Furthermore, we have noticed a huge droplet deformation leading to an increase by a factor 5 of the Weber number (from 1.4 to 7.0) on SH compared to hydrophobic surfaces. Finally, we discuss some of the repercussions of this behaviour especially for microfluidic device.

Keywords

Electrowetting Superhydrophobic surfaces Hydrophobic surfaces Droplet motion 

Notes

Acknowledgments

The Centre National de la Recherche Scientifique (CNRS), the Defence Science and Technology Laboratory (Porton Down, United Kingdom) and the European Community Seventh Frame-work Programme (FP7/2007–2013) under grant agreement no. 227243 are gratefully acknowledged for financial support. The authors thank F. Zoueshtiagh and P. Brunet for their kind support during the visualizations and G. Piret for her kind support for superhydrophobic surfaces realization.

References

  1. Abdelgawad M, Park P, Wheeler AR (2009) Optimization of device geometry in single-plate digital microfluidics. J Appl Phys 105(9):094, 506–507. doi: 10.1063/1.3117216 Google Scholar
  2. Au SH, Kumar P, Wheeler AR (2011) A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir 27(13):8586–8594. doi: 10.1021/la201185c Google Scholar
  3. Bavière R, Boutet J, Fouillet Y (2008) Dynamics of droplet transport induced by electrowetting actuation. Microfluid Nanofluid 4(4):287–294. doi: 10.1007/s10404-007-0173-4 Google Scholar
  4. Bocquet L, Lauga E (2011) A smooth future? Nat Mater 10(5): 334–337. doi: 10.1038/nmat2994 Google Scholar
  5. Brzoska JB, Brochard-Wyart F, Rondelez F (1993) Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9(8): 2220–2224. doi: 10.1021/la00032a052 Google Scholar
  6. Coffinier Y, Janel S, Addad A, Blossey R, Gengembre L, Payen E, Boukherroub R (2007) Preparation of superhydrophobic silicon oxide nanowire surfaces. Langmuir 23(4):1608–1611CrossRefGoogle Scholar
  7. Dufour R, Brunet P, Harnois M, Boukherroub R, Thomy V, Senez V (2012) Zipping effect on omniphobic surfaces for controlled deposition of minute amounts of fluid or colloids. Small 8(8):1229–1236. doi: 10.1002/smll.201101895 Google Scholar
  8. Eral HB, Augustine DM, Duits MHG, Mugele F (2011) Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting. Soft Matter 7(10):4954–4958. doi: 10.1039/C1SM05183K Google Scholar
  9. Galopin E, Piret G, Szunerits S, Lequette Y, Faille C, Boukherroub R (2010) Selective adhesion of bacillus cereus spores on heterogeneously wetted silicon nanowires. Langmuir 26(5):3479–3484. doi: 10.1021/la9030377 Google Scholar
  10. Grosse S, Schroder W (2008) Dynamic wall-shear stress measurements in turbulent pipe flow using the micro-pillar sensor mps3. Int J Heat Fluid Flow 29(3):830–840. http://www.sciencedirect.com/science/article/B6V3G-4S0HC0X-1/2/f1538e7159589d0351677b042da38325
  11. Jonsson-Niedziolka M, Lapierre F, Coffinier Y, Parry SJ, Zoueshtiagh F, Foat T, Thomy V, Boukherroub R (2011) Ewod driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. Lab Chip 11(3):490–496. doi: 10.1039/C0LC00203H Google Scholar
  12. Ko S, Lee H, Kang K (2008) Hydrodynamic flows in electrowetting. Langmuir 24(3):1094–1101CrossRefGoogle Scholar
  13. Lapierre F, Brunet P, Coffinier Y, Thomy V, Blossey R, Boukherroub R (2010) Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures. Faraday Discuss 146:125–139. doi: 10.1039/b925544c Google Scholar
  14. Lapierre F, Piret G, Drobecq H, Melnyk O, Coffinier Y, Thomy V, Boukherroub R (2011) High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 11(9):1620–1628. doi: 10.1039/C0LC00716A Google Scholar
  15. Lu HW, Glasner K, Bertozzi AL, Kim CJ (2007) A diffuse-interface model for electrowetting drops in a hele-shaw cell. J Fluid Mech 590:411–435zbMATHCrossRefGoogle Scholar
  16. Maali A, Bhushan B (2012) Measurement of slip length on superhydrophobic surfaces. Phil Trans R Soc A 370(1967):2304–2320CrossRefGoogle Scholar
  17. Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic loc devices. Lab Chip 10(4):418–431. doi: 10.1039/b917668c Google Scholar
  18. Malk R, Fouillet Y, Davoust L (2009) Rotating flow within a droplet actuated with ac ewod. Procedia Chemistry 1(1):1107–1110. doi:http://www.sciencedirect.com/science/article/B983C-4X49BRW-9W/2/1e1be9bf61884d5c0eae360c29438bb3 Google Scholar
  19. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774. http://stacks.iop.org/0953-8984/17/R705 Google Scholar
  20. Nelson WC, Sen P, Kim CJC (2011) Dynamic contact angles and hysteresis under electrowetting-on-dielectric. Langmuir 27(16):10319–10326. doi: 10.1021/la2018083, Google Scholar
  21. Oh JM, Ko SH, Kang KH (2008) Shape oscillation of a drop in ac electrowetting. Langmuir 24(15):8379–8386. doi: 10.1021/la8007359 Google Scholar
  22. Perry G, Thomy V, Das MR, Coffinier Y, Boukherroub R (2012) Inhibiting protein biofouling using graphene oxide in droplet-based microfluidic microsystems. Lab Chip 12(9):1601–1604. doi: 10.1039/C2LC21279J Google Scholar
  23. Piret G, Coffinier Y, Roux C, Melnyk O, Boukherroub R (2008) Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces. Langmuir 24:1670–1672CrossRefGoogle Scholar
  24. Schertzer M, Gubarenko S, Ben Mrad R, Sullivan P (2010a) An empirically validated model of the pressure within a droplet confined between plates at equilibrium for low bond numbers. Exp Fluids 48:851–862. doi:  10.1007/s00348-009-0773-8 Google Scholar
  25. Schertzer MJ, Gubarenko SI, Ben-Mrad R, Sullivan PE (2010b) An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices. Langmuir 26(24):19230–19238. doi: 10.1021/la103702t Google Scholar
  26. Verplanck N, Coffinier Y, Thomy V, Boukherroub R (2007a) Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res Lett 2(12):577–596. doi: 10.1007/s11671-007-9102-4, Google Scholar
  27. Verplanck N, Galopin E, Camart JC, Thomy V, Coffinier Y, Boukherroub R (2007b) Reversible electrowetting on superhydrophobic silicon nanowires. Nano Lett 7(3):813–817CrossRefGoogle Scholar
  28. Zhang J, Han Y (2009) dual-parallel-channel shape-gradient surfaces: Toward oriented and reversible movement of water droplets. Langmuir 25(24):14195–14199. doi: 10.1021/la9014898 Google Scholar
  29. Zhang J, Lu X, Huang W, Han Y (2005) Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film. Macromol Rapid Commun 26(6):477–480. doi: 10.1002/marc.200400512 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Lapierre
    • 1
    • 2
  • Martin Jonsson-Niedziolka
    • 1
    • 2
  • Yannick Coffinier
    • 1
    • 2
  • Rabah Boukherroub
    • 1
  • Vincent Thomy
    • 2
  1. 1.Interdisciplinary Research Institute (IRI), USR CNRS 3078University of Lille 1Villeneuve d’AscqFrance
  2. 2.Institute of Electronics, de Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520University of Lille 1Villeneuve d’AscqFrance

Personalised recommendations