Advertisement

Microfluidics and Nanofluidics

, Volume 15, Issue 2, pp 243–252 | Cite as

Design of a flow-controlled asymmetric droplet splitter using computational fluid dynamics

  • Bert Verbruggen
  • Tamara Tóth
  • Yegermal Tesfaw Atalay
  • Frederik Ceyssens
  • Pieter Verboven
  • Robert Puers
  • Bart Nicolai
  • Jeroen LammertynEmail author
Research Paper

Abstract

In this work the design of a segmented flow microfluidic device is presented that allows droplet splitting ratios from 1:1 up to 20:1. This ratio can be dynamically changed on chip by altering an additional oil flow. The design was fabricated in PDMS chips using the standard SU-8 mold technique and does not require any valves, membranes, optics or electronics. To avoid a trial and error approach, fabricating and testing several designs, a computational fluid dynamics model was developed and validated for droplet formation and splitting. The model was used to choose between several variations of the splitting T-junction with the extra oil inlet, as well to predict the additional flow rate needed to split the droplets in various ratios. Experimental and simulated results were in line, suggesting the model’s suitability to optimize future designs and concepts. The resulting asymmetric droplet splitter design opens possibilities for controlled sampling and improved magnetic separation in bio-assay applications.

Keywords

Asymmetric splitting Droplets in micro-channels Segmented flow microfluidics Computational fluid dynamics 

Notes

Acknowledgments

The authors thank the Flemish Institute for the Promotion of Innovation through Science and Development (IWT grant: 81166), the Flemish Fund for Scientific Research (FWO grant G0767.09 and Postdoctoral mandate Frederik Ceyssens), KU Leuven (OT project 08/023) and EU FP-7 Marie-Curie ITN-BioMax. Special thanks go to Mark Romanowski and Ralph Sperling from the Weitz lab of Harvard University who freely provided their custom perfluorinated surfactant as well as priceless advice.

References

  1. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364. doi: 10.1063/1.1537519 CrossRefGoogle Scholar
  2. Atalay YT, Verboven P, Vermeir S et al (2008) Design optimization of an enzymatic assay in an electrokinetically-driven microfluidic device. Microfluid Nanofluid 5:837–849. doi: 10.1007/s10404-008-0291-7 CrossRefGoogle Scholar
  3. Atalay YT, Witters D, Vermeir S et al (2009) Design and optimization of a double-enzyme glucose assay in microfluidic lab-on-a-chip. Biomicrofluidics 3:44103. doi: 10.1063/1.3250304 CrossRefGoogle Scholar
  4. Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 335354:335–354. doi: 10.1016/0021-9991(92)90240-Y MathSciNetCrossRefGoogle Scholar
  5. Christopher GF, Bergstein J, End NB et al (2009) Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip 9:1102–1109. doi: 10.1039/b813062k CrossRefGoogle Scholar
  6. De Lózar A, Juel A, Hazel AL (2008) The steady propagation of an air finger into a rectangular tube. J Fluid Mech 614:173. doi: 10.1017/S0022112008003455 MathSciNetzbMATHCrossRefGoogle Scholar
  7. De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161. doi: 10.1017/S002211200700910X zbMATHCrossRefGoogle Scholar
  8. Dreyfus R, Tabeling P, Willaime H (2003) Ordered and disordered patterns in two-phase flows in microchannels. Phys Rev Lett 90:1–4. doi: 10.1103/PhysRevLett.90.144505 CrossRefGoogle Scholar
  9. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi: 10.1021/ac980656z CrossRefGoogle Scholar
  10. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446CrossRefGoogle Scholar
  11. Grodrian A, Metze J, Henkel T et al (2004) Segmented flow generation by chip reactors for highly parallelized cell cultivation. Biosens Bioelectron 19:1421–1428. doi: 10.1016/j.bios.2003.12.021 CrossRefGoogle Scholar
  12. Günther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–1503. doi: 10.1039/b609851g CrossRefGoogle Scholar
  13. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225. doi: 10.1016/0021-9991(81)90145-5 zbMATHCrossRefGoogle Scholar
  14. Holtze C, Rowat AC, Agresti JJ et al (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632–1639. doi: 10.1039/b806706f CrossRefGoogle Scholar
  15. Huebner A, Srisa-Art M, Holt DJ et al (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 1218–1220. doi: 10.1039/b618570c
  16. Huebner A, Olguin LF, Bratton D et al (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80:3890–3896. doi: 10.1021/ac800338z CrossRefGoogle Scholar
  17. Huebner A, Bratton D, Whyte G et al (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692–698. doi: 10.1039/b813709a CrossRefGoogle Scholar
  18. Kolb WB, Cerro RL (1993) The motion of long bubbles in tubes of square cross section. Phys Fluids A Fluid Dyn 5:1549. doi: 10.1063/1.858832 zbMATHCrossRefGoogle Scholar
  19. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503. doi: 10.1103/PhysRevLett.92.054503 CrossRefGoogle Scholar
  20. Liu H, Zhang Y (2011) Droplet formation in microfluidic cross-junctions. Phys Fluids 23:082101. doi: 10.1063/1.3615643 CrossRefGoogle Scholar
  21. Lombardi D, Dittrich PS (2011) Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions. Anal Bioanal Chem 399:347–352. doi: 10.1007/s00216-010-4302-7 CrossRefGoogle Scholar
  22. Nie J, Kennedy RT (2010) Sampling from nanoliter plugs via asymmetrical splitting of segmented flow. Anal Chem 82:7852–7856. doi: 10.1021/ac101723x CrossRefGoogle Scholar
  23. Nightingale AM, De Mello JC (2010) Microscale synthesis of quantum dots. J Mater Chem 20:8454. doi: 10.1039/c0jm01221a CrossRefGoogle Scholar
  24. Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–293. doi: 10.1039/b713141k CrossRefGoogle Scholar
  25. Niu X, Gulati S, Edel JB, DeMello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841. doi: 10.1039/b813325e CrossRefGoogle Scholar
  26. Olbricht WL (1996) Pore-scale prototypes of multiphase flow in porous media. Annu Rev Fluid Mech 28:187–213. doi: 10.1146/annurev.fl.28.010196.001155 MathSciNetCrossRefGoogle Scholar
  27. Pan X, Zeng S, Zhang Q et al (2011) Sequential microfluidic droplet processing for rapid DNA extraction. Electrophoresis 1–7. doi: 10.1002/elps.201100078
  28. Pekin D, Skhiri Y, Baret J-C et al (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11:2156–2166. doi: 10.1039/c1lc20128j CrossRefGoogle Scholar
  29. Sivasamy J, Wong T-N, Nguyen N-T, Kao LT-H (2011) An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluid Nanofluid 11:1–10. doi: 10.1007/s10404-011-0767-8 CrossRefGoogle Scholar
  30. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619. doi: 10.1021/ja0354566 CrossRefGoogle Scholar
  31. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem 115:792–796. doi: 10.1002/ange.200390172 CrossRefGoogle Scholar
  32. Srisa-Art M, deMello AJ, Edel JB (2010) High-efficiency single-molecule detection within trapped aqueous microdroplets. J phys chem B 114:15766–15772. doi: 10.1021/jp105749t CrossRefGoogle Scholar
  33. Thorsen T, Roberts R, Arnold F, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166. doi: 10.1103/PhysRevLett.86.4163 CrossRefGoogle Scholar
  34. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi: 10.1038/nature05058 CrossRefGoogle Scholar
  35. Yamada M, Doi S, Maenaka H et al (2008) Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. J Colloid Interface Sci 321:401–407. doi: 10.1016/j.jcis.2008.01.036 CrossRefGoogle Scholar
  36. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem 43:2508–2511. doi: 10.1002/anie.200453974 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bert Verbruggen
    • 1
  • Tamara Tóth
    • 1
  • Yegermal Tesfaw Atalay
    • 1
  • Frederik Ceyssens
    • 2
  • Pieter Verboven
    • 1
  • Robert Puers
    • 2
  • Bart Nicolai
    • 1
  • Jeroen Lammertyn
    • 1
    Email author
  1. 1.BIOSYST-MeBioSUniversity of LeuvenLeuvenBelgium
  2. 2.ESAT-MICASUniversity of LeuvenLeuvenBelgium

Personalised recommendations