Microfluidics and Nanofluidics

, Volume 14, Issue 5, pp 885–894 | Cite as

A high-shear, low Reynolds number microfluidic rheometer

Research Paper

Abstract

We present a microfluidic rheometer that uses in situ pressure sensors to measure the viscosity of liquids at low Reynolds number. Viscosity is measured in a long, straight channel using a PDMS-based microfluidic device that consists of a channel layer and a sensing membrane integrated with an array of piezoresistive pressure sensors via plasma surface treatment. The micro-pressure sensor is fabricated using conductive particles/PDMS composites. The sensing membrane maps pressure differences at various locations within the channel in order to measure the fluid shear stress in situ at a prescribed shear rate to estimate the fluid viscosity. We find that the device is capable to measure the viscosity of both Newtonian and non-Newtonian fluids for shear rates up to 104 s−1 while keeping the Reynolds number well below 1.

Keywords

Rheometry Microfluidics Low Reynolds number flows High shear rates Non-Newtonian fluids 

Supplementary material

10404_2012_1124_MOESM1_ESM.pdf (357 kb)
PDF (356 KB)

References

  1. Abyaneh MK, Kulkarni SK (2008) Giant piezoresistive response in zinc-polydimethylsiloxane composites under uniaxial pressure. J Phys D Appl Phys 41(13):135405CrossRefGoogle Scholar
  2. Arratia PE, Voth GA, Gollub JP (2005) Stretching and mixing of non-newtonian fluids in time-periodic flows. Phys Fluids 17:053102MathSciNetCrossRefGoogle Scholar
  3. Arratia PE, Thomas CC, Diorio J, Gollub JP (2006) Elastic instabilities of polymer solutions in cross-channel flow. Phys Rev Lett 96:144502CrossRefGoogle Scholar
  4. Chuang HS, Wereley S (2009) Design, fabrication and characterization of a conducting pdms for microheaters and temperature sensors. J Micromech Microeng 19(4):045010CrossRefGoogle Scholar
  5. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interf Sci 179:298–310CrossRefGoogle Scholar
  6. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal pdms–pdms bonding technique for microfluidic devices. J Micromech Microeng 18(6):067001CrossRefGoogle Scholar
  7. Gisler T, Weitz DA (1998) Tracer microrheology in complex fluids. Curr Opin Colloid Interf Sci 3(6):586–592CrossRefGoogle Scholar
  8. Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79(17):3286–3289CrossRefGoogle Scholar
  9. Jo BH, Lerberghe LMV, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (pdms) elastomer. J Microelectromech Syst 9(1):76–81CrossRefGoogle Scholar
  10. Kang K, Lee LJ, Koelling KW (2005) High shear microfluidics and its application in rheological measurement. Exp Fluids 38(2):222–232CrossRefGoogle Scholar
  11. Kim K, Pak HK (2010) Diffusing-wave spectroscopy study of microscopic dynamics of three-dimensional granular systems. Soft Matter 6(13):2894–2900CrossRefGoogle Scholar
  12. Larson RG (1999) The rheology and structure of complex fluids. Oxford University Press, OxfordGoogle Scholar
  13. Larson RG, Shaqfeh ESG, Muller SJ (1990) Purely elastic instability in Taylor–Couette flow. J Fluid Mech 218:573–600MathSciNetMATHCrossRefGoogle Scholar
  14. Laun HM (1983) Polymer melt rheology with a slit die. Rheol Acta 22(2):171–185MathSciNetCrossRefGoogle Scholar
  15. Li H, Luo CX, Ji H, Ouyang Q, Chen Y (2010) Micro-pressure sensor made of conductive pdms for microfluidic applications. Microelectro Eng 87(5-8):1266–1269CrossRefGoogle Scholar
  16. Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792CrossRefGoogle Scholar
  17. Liu C (2007) Recent developments in polymer mems. Adv Mater 19(22):3783–3790CrossRefGoogle Scholar
  18. Macosko CW (1994) Rheology principles, measurements, and applications. Wiley-VCH, WeinheimGoogle Scholar
  19. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74(7):1250–1253CrossRefGoogle Scholar
  20. McDonald JC, Whitesides GW (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRefGoogle Scholar
  21. Niu XZ, Peng SL, Liu LY, Wen WJ, Sheng P (2007) Characterizing and patterning of pdms-based conducting composites. Adv Mater 19(18):2682CrossRefGoogle Scholar
  22. Nordstrom KN, Verneuil E, Arratia PE, Basu A, Zhang Z, Yodh AG, Gollub JP, Durian DJ (2010) Microfluidic rheology of soft colloids above and below jamming. Phys Rev Lett 105:175,701CrossRefGoogle Scholar
  23. Orth A, Schonbrun E, Crozier KB (2011) Multiplexed pressure sensing with elastomer membranes. Lab Chip 11(22):3810–3815CrossRefGoogle Scholar
  24. Palmer A, Mason TG, Xu JY, Kuo SC, Wirtz D (1999) Diffusing wave spectroscopy microrheology of actin filament networks. Biophys J 76(2):1063–1071CrossRefGoogle Scholar
  25. Pipe CJ, Majmudar TS, McKinley GH (2008) High shear rate viscometry. Rheol Acta 47(5-6):621–642CrossRefGoogle Scholar
  26. Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290(5496):1536–1540CrossRefGoogle Scholar
  27. Schultz KM, Furst EM (2011) High-throughput rheology in a microfluidic device. Lab Chip 11(22):3802–3809CrossRefGoogle Scholar
  28. Shen XN, Arratia PE (2011) Undulatory swimming in viscoelastic fluids. Phys Rev Lett 106:208,101Google Scholar
  29. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576CrossRefGoogle Scholar
  30. Strumpler R, Glatz-Reichenbach J (1999) Conducting polymer composites. J Electroceram 3:329–346CrossRefGoogle Scholar
  31. Toker D, Azulay D, Shimoni N, Balberg I, Millo O (2003) Tunneling and percolation in metal-insulator composite materials. Phys Rev B 68(4):041,403CrossRefGoogle Scholar
  32. Wang L, Zhang M, Yang M, Zhu W, Wu J, Gong X, Wen W (2009) Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips. Biomicrofluidics 3:034,105CrossRefGoogle Scholar
  33. Wu CY, Liao WH, Tung YC (2011) Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 11(10):1740–1746CrossRefGoogle Scholar
  34. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations