Microfluidics and Nanofluidics

, Volume 14, Issue 3–4, pp 637–644

Formation of fully closed microcapsules as microsensors by microfluidic double emulsion

Research Paper

Abstract

Microcapsules templated from microfluidic double emulsions attract a great attention due to their broad new potential applications. We present a method to form transparent polymer microcapsules in small sizes of ~30 μm with aqueous cores and fully closed shells. We controlled the size ratio of the aqueous core to the polymer shell not only by flow rates of the double emulsions, but also by synergetic interaction between surfactants at the interface of immiscible fluids. We also found that fully closed shells can be formed by generating the double emulsion droplets in a jetting regime, in which the aqueous cores are confined centrally in the double emulsion droplets. We demonstrated the formation of barcodes in these microcapsules for multiplexed bioassays. These transparent microcapsules also have wide and high potentials for the development of various microsensors by functionalizing the liquid-state cores with compounds sensitive and responsive to temperature, light or electromagnetic field.

Supplementary material

10404_2012_1083_MOESM1_ESM.docx (345 kb)
Supplementary material 1 (DOCX 344 kb)

References

  1. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366. doi:10.1063/1.1537519 CrossRefGoogle Scholar
  2. Chen PW, Erb RM, Studart AR (2011) Designer polymer-based microcapsules made using microfluidics. Langmuir 28(1):144–152. doi:10.1021/la203088u CrossRefGoogle Scholar
  3. de Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161. doi:10.1017/S002211200700910X MATHCrossRefGoogle Scholar
  4. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155. doi:10.1039/C2LC21147E CrossRefGoogle Scholar
  5. Gupta A, Murshed SMS, Kumar R (2009) Droplet formation and stability of flows in a microfluidic T-junction. Appl Phys Lett 94 (16):164107. doi:10.1063/1.3116089 Google Scholar
  6. Hennequin Y, Pannacci N, de Torres CP, Tetradis-Meris G, Chapuliot S, Bouchaud E, Tabeling P (2009) Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir 25(14):7857–7861. doi:10.1021/la9004449 CrossRefGoogle Scholar
  7. Hermanson GT (2008) Bioconjugate techniques. Elsevier Academic Press, AmsterdamGoogle Scholar
  8. Ichikawa H, Fukumori Y (2000) A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release 63(1–2):107–119. doi:10.1016/S0168-3659(99)00181-9 CrossRefGoogle Scholar
  9. Ivanov VB, Behnisch J, Hollander A, Mehdorn F, Zimmermann H (1996) Determination of functional groups on polymer surfaces using fluorescence labelling. Surf Interface Anal 24(4):257–262. doi:10.1002/(sici)1096-9918(199604)24:4<257:aid-sia107>3.3.co;2-t CrossRefGoogle Scholar
  10. Karstens T, Kobs K (1980) Rhodamine-b and rhodamine-101 as reference substances for fluorescence quantum yield measurements. J Phys Chem 84(14):1871–1872. doi:10.1021/j100451a030 CrossRefGoogle Scholar
  11. Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21(3):14. doi:10.1063/1.3081407 CrossRefGoogle Scholar
  12. Lewis PC, Graham RR, Nie ZH, Xu SQ, Seo M, Kumacheva E (2005) Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules 38(10):4536–4538. doi:10.1021/ma050101n CrossRefGoogle Scholar
  13. Lin SP, Reitz RD (1998) Drop and spray formation from a liquid jet. Annu Rev Fluid Mech 30:85–105. doi:10.1146/annurev.fluid.30.1.85 MathSciNetCrossRefGoogle Scholar
  14. Liu HH, Zhang YH (2009) Droplet formation in a T-shaped microfluidic junction. J Appl Phys 106(3):034906. doi:10.1063/1.3187831 Google Scholar
  15. Mastrobattista E, Taly V, Chanudet E, Treacy P, Kelly BT, Griffiths AD (2005) High-throughput screening of enzyme libraries: in vitro evolution of a β-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 12(12):1291–1300. doi:10.1016/j.chembiol.2005.09.016 CrossRefGoogle Scholar
  16. Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127(22):8058–8063. doi:10.1021/ja042494w CrossRefGoogle Scholar
  17. Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908. doi:10.1021/la0480336 CrossRefGoogle Scholar
  18. Panizza P, Engl W, Hany C, Backov R (2008) Controlled production of hierarchically organized large emulsions and particles using assemblies on line of co-axial flow devices. Colloid Surf A Physicochem Eng Asp 312(1):24–31. doi:10.1016/j.colsurfa.2007.06.026 CrossRefGoogle Scholar
  19. Pons R, Taylor P, Tadros TF (1997) Investigation of the interactions in emulsions stabilized by a polymeric surfactant and its mixtures with an anionic surfactant. Colloid Polym Sci 275(8):769–776. doi:10.1007/s003960050146 CrossRefGoogle Scholar
  20. Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817):1393–1396. doi:10.1126/science.1134929 CrossRefGoogle Scholar
  21. Priest C, Quinn A, Postma A, Zelikin AN, Ralston J, Caruso F (2008) Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8(12):2182–2187. doi:10.1039/b808826h CrossRefGoogle Scholar
  22. Tian H, Wang S (2007) Photochromic bisthienylethene as multi-function switches. Chem Commun 8:781–792. doi:10.1039/b610004j CrossRefGoogle Scholar
  23. Torza S, Mason SG (1969) Coalescence of 2 immiscible liquid drops. Science 163(3869):813–814. doi:10.1126/science.163.3869.813 CrossRefGoogle Scholar
  24. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. doi:10.1126/science.1109164 CrossRefGoogle Scholar
  25. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99 (9). doi:10.1103/PhysRevLett.99.094502
  26. Wu B, Gong H-Q (2012) Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules. Microfluid Nanofluid 1–9. doi:10.1007/s10404-012-1009-4
  27. Yang H, Han YH, Zhao XW, Nagai K, Gu ZZ (2006) Thermal responsive microlens arrays. Appl Phys Lett 89(11):3. doi:10.1063/1.2354435 Google Scholar
  28. Zhu C, Xu WY, Chen LS, Zhang WD, Xu H, Gu ZZ (2011) Magnetochromatic microcapsule arrays for displays. Adv Funct Mater 21(11):2043–2048. doi:10.1002/adfm.201002296 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations