Advertisement

Microfluidics and Nanofluidics

, Volume 14, Issue 3–4, pp 615–625 | Cite as

On the dynamic contact angle in simulation of impinging droplets with sharp interface methods

  • Sashikumaar Ganesan
Research Paper

Abstract

Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian–Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace–Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.

Keywords

Dynamic contact angle Moving contact line Impinging droplet Finite elements ALE approach 

References

  1. Bayer IS, Megaridis CM (2006) Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics. J Fluid Mech 558:415–449zbMATHCrossRefGoogle Scholar
  2. Bracke M, Voeght FD, Joos P (1989) The kinetics of wetting: the dynamic contact angle. Progr Colloid Polym Sci 79:142–149CrossRefGoogle Scholar
  3. Bristeau MO, Glowinski R, Periaux J (1987) Numerical methods for the Navier–Stokes equations. application to the simulation of compressible and incompressible flows. Comput Phys 6:73–188CrossRefGoogle Scholar
  4. Chen Y, Kulenovic R, Mertz R (2009) Numerical study on the formation of taylor bubbles in capillary tubes. Int J Thermal Sci 48:234–242CrossRefGoogle Scholar
  5. Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J Fluid Mech 168:169–194zbMATHCrossRefGoogle Scholar
  6. Crouzeix M, Raviart PA (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal Numer 7:33–76MathSciNetGoogle Scholar
  7. Dussan EB (1976) The moving contact line: the slip boundary condition. J Fluid Mech 77(4):665–684zbMATHCrossRefGoogle Scholar
  8. Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11:371–400CrossRefGoogle Scholar
  9. Dziuk G (1991) An algorithm for evolutionary surfaces. Numer Math 58:603–611MathSciNetzbMATHCrossRefGoogle Scholar
  10. Fukai J, Shiiba Y, Yamamoto T, Miyatake O, Poulikakos D, Megaridis CM, Zhao Z (1995) Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys Fluids 7(2):236–247CrossRefGoogle Scholar
  11. Ganesan S (2006) Finite element methods on moving meshes for free surface and interface flows. PhD Thesis, Otto-von-Guericke-Universität, Fakultät für Mathematik, MagdeburgGoogle Scholar
  12. Ganesan S, Tobiska L (2005) Finite element simulation of a droplet impinging a horizontal surface. In: Proceedings of the algoritmy 2005, Slovak Technical University, Bratislava, pp 1–11Google Scholar
  13. Ganesan S, Tobiska L (2008) An accurate finite element scheme with moving meshes for computing 3D-axisymmetric interface flows. Int J Numer Methods Fluids 57(2):119–138MathSciNetzbMATHCrossRefGoogle Scholar
  14. Ganesan S, Tobiska L (2009) Modelling and simulation of moving contact line problems with wetting effects. Comput Visual Sci 12:329–336MathSciNetzbMATHCrossRefGoogle Scholar
  15. Gennes PGD (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863CrossRefGoogle Scholar
  16. Haley PJ, Miksis MJ (1991) The effect of the contact line on droplet spreading. J Fluid Mech 223:57–81MathSciNetzbMATHCrossRefGoogle Scholar
  17. Hocking L (1995) On the contact angels in evaporating liquids. Phys Fluids 7:2950–2955MathSciNetzbMATHCrossRefGoogle Scholar
  18. Hocking LM (1976) A moving fluid interface on a rough surface. J Fluid Mech 76(4):801–817zbMATHCrossRefGoogle Scholar
  19. Hocking LM (1983) The spreading of a thin drop by gravity and capillarity. Q J Mech Appl Math 36:55–69zbMATHCrossRefGoogle Scholar
  20. Hocking LM (1992) Rival contact-angle models and the spreading of drops. J Fluid Mech 239:671–681Google Scholar
  21. Hocking LM, Davis SH (2002) Inertial effects in time-dependent motion of tin films and drops. J Fluid Mech 467:1–17MathSciNetzbMATHCrossRefGoogle Scholar
  22. Hoffman RL (1975) A study of the advancing interface. I. Interface shape in liquid–gas systems. J Colloid Interface Sci 50(2):228–241CrossRefGoogle Scholar
  23. Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35:85–101CrossRefGoogle Scholar
  24. Johnson A, Tezduyar T (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Meth Appl Mech Eng 119(1-2):73–94zbMATHCrossRefGoogle Scholar
  25. Kistler SF (1993) Hydrodynamics of wetting. In: Berg J (ed) Wettability. Marcel Dekker, New York, pp 311–429Google Scholar
  26. Rannacher R (2004) Incompressible viscous flows. In: Stein E, de Borst R, Hughes T (eds) Encyclopedia of computational mechanics, chap 6, vol 3. Wiley,London, pp 155–182Google Scholar
  27. Renardy M, Renardy Y, Li J (2001) Numerical simulation of moving contact line problems using a volume-of-fluid method. J Comput Phys 171:243–263zbMATHCrossRefGoogle Scholar
  28. Saha AA, Mitra SK (2009) Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow. J Colloid Interface Sci 339(2):461–480CrossRefGoogle Scholar
  29. Schönfeld F, Hardt S (2009) Dynamic contact angles in CFD simulations. Comput Fluids 38(4):757–764zbMATHCrossRefGoogle Scholar
  30. Spelt PDM (2005) A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J Comput Phys 207:389–404MathSciNetzbMATHCrossRefGoogle Scholar
  31. T-S Jiang OHSG, Slattery JC (1979) Correlation for dynamic contact angle. J Colloid Interface Sci 69:74–77CrossRefGoogle Scholar
  32. Turek S (1999) Efficient solvers for incompressible flow problems. An algorithmic and computational approach. Springer, BerlinzbMATHCrossRefGoogle Scholar
  33. Šikalo S, Wilhelm HD, Roisman IV, Jakirlić S, Tropea C (2005) Dynamic contact angle of spreading droplets: Experiments and simulations. Phys Fluids 17(062103):1–13Google Scholar
  34. Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Numerical Mathematics and Scientific Computing, Supercomputer Education and Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations