Advertisement

Microfluidics and Nanofluidics

, Volume 14, Issue 3–4, pp 509–514 | Cite as

Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device

  • Shin-Hyun Kim
  • Jin Woong Kim
  • Do-Hoon Kim
  • Sang-Hoon Han
  • David A. Weitz
Research Paper

Abstract

We report a parallelized capillary microfluidic device for enhanced production rate of monodisperse polymersomes. This device consists of four independent capillary microfluidic devices, operated in parallel; each device produces monodisperse water-in-oil-in-water (W/O/W) double-emulsion drops through a single-step emulsification. During generation of the double-emulsion drops, the innermost water drop is formed first and it triggers a breakup of the middle oil phase over wide range of flow rates; this enables robust and stable formation of the double-emulsion drops in all drop makers of the parallelized device. Double-emulsion drops are transformed to polymersomes through a dewetting of the amphiphile-laden middle oil phase on the surface of the innermost water drop, followed by the subsequent separation of the oil drop. Therefore, we can make polymersomes with a production rate enhanced by a factor given by the number of drop makers in the parallelized device.

Keywords

Microfluidics Polymersomes Emulsions Microcapsules Parallelization 

Notes

Acknowledgments

This work was supported by Amore-Pacific, the National Science Foundation (DMR-1006546) and the Harvard Materials Research Science and Engineering Center (DMR-0820484).

References

  1. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366CrossRefGoogle Scholar
  2. Choi SW, Zhang Y, Xia YN (2009) Fabrication of microbeads with a controllable hollow interior and porous wall using a capillary fluidic device. Adv Funct Mater 19(18):2943–2949CrossRefGoogle Scholar
  3. Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116CrossRefGoogle Scholar
  4. Guillot P, Colin A, Utada AS, Ajdari A (2007) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys Rev Lett 99(10):104502CrossRefGoogle Scholar
  5. Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647CrossRefGoogle Scholar
  6. Kim SH, Weitz DA (2011) One-step emulsification of multiple concentric shells with capillary microfluidic devices. Angew Chem Int Ed 50(37):8731–8734CrossRefGoogle Scholar
  7. Kim JW, Utada AS, Fernandez-Nieves A, Hu ZB, Weitz DA (2007) Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed 46(11):1819–1822CrossRefGoogle Scholar
  8. Kim SH, Jeon SJ, Jeong WC, Park HS, Yang SM (2008a) Optofluidic synthesis of electroresponsive photonic Janus balls with isotropic structural colors. Adv Mater 20(21):4129–4134Google Scholar
  9. Kim SH, Jeon SJ, Yang SM (2008b) Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane. J Am Chem Soc 130(18):6040–6046CrossRefGoogle Scholar
  10. Kim SH, Sim JY, Lim JM, Yang SM (2010) Magnetoresponsive microparticles with nanoscopic surface structures for remote-controlled locomotion. Angew Chem Int Ed 49(22):3786–3790CrossRefGoogle Scholar
  11. Kim SH, Abbaspourrad A, Weitz DA (2011a) Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids. J Am Chem Soc 133(14):5516–5524CrossRefGoogle Scholar
  12. Kim SH, Kim JW, Cho JC, Weitz DA (2011b) Double-emulsion drops with ultra-thin shells for capsule templates. Lab Chip 11(18):3162–3166CrossRefGoogle Scholar
  13. Kim SH, Shum HC, Kim JW, Cho JC, Weitz DA (2011c) Multiple polymersomes for programmed release of multiple components. J Am Chem Soc 133(38):15165–15171CrossRefGoogle Scholar
  14. Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv Mater 20(18):3498–3503CrossRefGoogle Scholar
  15. Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA (2005) Generation of polymerosomes from double-emulsions. Langmuir 21(20):9183–9186CrossRefGoogle Scholar
  16. Nie ZH, Li W, Seo M, Xu SQ, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128(29):9408–9412CrossRefGoogle Scholar
  17. Nisisako T, Torii T (2007) Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv Mater 19(11):1489–1493CrossRefGoogle Scholar
  18. Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293CrossRefGoogle Scholar
  19. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18(9):1152–1156CrossRefGoogle Scholar
  20. Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908CrossRefGoogle Scholar
  21. Ota S, Yoshizawa S, Takeuchi S (2009) Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew Chem Int Ed 48(35):6533–6537CrossRefGoogle Scholar
  22. Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12:802–807CrossRefGoogle Scholar
  23. Shum HC, Kim JW, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130(29):9543–9549CrossRefGoogle Scholar
  24. Shum HC, Santanach-Carreras E, Kim JW, Ehrlicher A, Bibette J, Weitz DA (2011) Dewetting-induced membrane formation by adhesion of amphiphile-laden interfaces. J Am Chem Soc 133(12):4420–4426CrossRefGoogle Scholar
  25. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRefGoogle Scholar
  26. Umbanhowar PB, Prasad V, Weitz DA (2000) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16(2):347–351CrossRefGoogle Scholar
  27. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541CrossRefGoogle Scholar
  28. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502CrossRefGoogle Scholar
  29. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44(25):3799CrossRefGoogle Scholar
  30. Zhao YJ, Zhao XW, Sun C, Li J, Zhu R, Gu ZZ (2008) Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal Chem 80(5):1598–1605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physics and School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Department of Chemical and Biomolecular EngineeringKAISTDaejeonSouth Korea
  3. 3.Department of Applied ChemistryHanyang UniversityAnsanSouth Korea
  4. 4.Amore-Pacific Co. R&D CenterYonginSouth Korea

Personalised recommendations