Microfluidics and Nanofluidics

, Volume 14, Issue 1–2, pp 345–358 | Cite as

Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators

  • Coleman Murray
  • David McCoul
  • Elodie Sollier
  • Taylor Ruggiero
  • Xiaofan Niu
  • Qibing Pei
  • Dino Di Carlo
Research Paper

Abstract

With the expanding role of microfluidics in biology and medicine, methodologies for on-chip fluid sample manipulation become increasingly important. While conventional methods of microfluidic actuation, such as pneumatic and piezoelectric valves, are well characterized and commonly used, they require bulky external setups and complex fabrication. To address the need for a simple microfluidic actuator, we introduce a hybrid device consisting of an electroactive polymer that controls the shape of a microfluidic channel with an applied bias voltage. The electro-adaptive microfluidic (EAM) device allowed tuning of fluidic resistances by up to 18.1 %. In addition, we have shown that the EAM device is able to clear microchannel blockages by actively expanding the channel cross section. Biocompatibility tests show the EAM device has little effect on cell viability within a voltage range and thus has the potential to be utilized in bio-microfluidic systems. All of these results indicate that this EAM device design may find use in applications from cell sorting and trapping and self-clearing channels, to the reduction of lab-on-a-chip complexity via tunable channel geometries.

Keywords

Electro-adaptive microfluidics (EAMs) Microchannel actuation Electroactive polymer Dielectric elastomer Polymer actuator Microelectromechanical systems (MEMS) 

Supplementary material

10404_2012_1055_MOESM1_ESM.pdf (139 kb)
Supplementary material (PDF 138 kb)

References

  1. Bar-Cohen Y, Xue T, Shahinpoor M, Simpson JO, Smith J (1998) Low-mass muscle actuators using electroactive polymers (EAP). Proc SPIE 3324:32. doi:10.1117/12.316866 Google Scholar
  2. Bélanger MC, Marois Y (2001) Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res 58(5):467–477. doi:10.1002/jbm.1043 CrossRefGoogle Scholar
  3. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36. doi:10.1002/marc.200900425 CrossRefGoogle Scholar
  4. Bruus H (2008) Theoretical microfluidics. Oxford University Press, New YorkGoogle Scholar
  5. Carpi F, Chiarelli P, Mazzoldi A, De Rossi D (2003) Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens Actuators A 107(1):85–95. doi:10.1016/s0924-4247(03)00257-7 CrossRefGoogle Scholar
  6. Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 18(7):41–57. doi:10.1039/b611455e CrossRefGoogle Scholar
  7. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. doi:10.1039/c2lc21204h Google Scholar
  8. Folch A, Au AK, Lai H, Utela BR (2011) Microvalves and micropumps for BioMEMS. Micromachines 155(2):179–220. doi:10.3390/mi2020179 Google Scholar
  9. Goh JK (2009) Effects of wall compliance on pulsatile flow attenuation in microchannels. Dissertation, San Jose State University, San JoseGoogle Scholar
  10. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267. doi:10.1007/s00216-010-3721-9 CrossRefGoogle Scholar
  11. Graf NJ, Bowser MT (2008) A soft-polymer piezoelectric bimorph cantilever-actuated peristaltic micropump. Lab Chip 8:1664–1670. doi:10.1039/b805252b CrossRefGoogle Scholar
  12. Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors Actuators B: Chem 89(3):315–323. doi:10.1016/s0925-4005(02)00468-9 CrossRefGoogle Scholar
  13. Ha SM, Yuan W, Pei Q, Pelrine R, Stanford S (2006) Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater 18(7):887–891. doi:10.1002/adma.200502437 CrossRefGoogle Scholar
  14. Handique K, Burke DT, Mastrangelo CH, Burns MA (2001) On-chip thermopneumatic pressure for discrete drop pumping. Anal Chem 73(8):1831–1838. doi:10.1021/ac000711f CrossRefGoogle Scholar
  15. Heikali D, Di Carlo D (2010) A niche for microfluidics in portable hematology analyzers. J Assoc Lab Autom 15(4):319–328. doi:10.1016/j.jala.2010.02.005 CrossRefGoogle Scholar
  16. Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280. doi:10.1039/b919495a CrossRefGoogle Scholar
  17. Jager E, Smela E, Inganas O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545. doi:10.1126/science.290.5496.1540 CrossRefGoogle Scholar
  18. Kim Y, Kuczenski B, LeDuc PR, Messner WC (2009) Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface. Lab Chip 9:2603–2609. doi:10.1039/b822423d CrossRefGoogle Scholar
  19. Koh SJA, Li T, Zhou J, Zhao X, Hong W, Zhu J, Suo Z (2011) Mechanisms of large actuation strain in dielectric elastomers. J Polym Sci, Part B: Polym Phys 49(7):504–515. doi:10.1002/polb.22223 CrossRefGoogle Scholar
  20. Kornbluh R, Pelrine R, Pei Q, Heydt R, Stanford S, Oh S, Eckerle J (2002) Electroelastomers: applications of dielectric elastomer transducers for actuation generation and smart structures. Proc SPIE 4698:254–270. doi:10.1117/12.475072 CrossRefGoogle Scholar
  21. Kovacs G, Düring L, Michel S, Terrasi G (2009) Stacked dielectric elastomer actuator for tensile force transmission. Sens Actuators A 155:299–307. doi:10.1016/j.sna.2009.08.027 CrossRefGoogle Scholar
  22. Lee DE, Soper S, Wang W (2008) Design and fabrication of an electrochemically actuated microvalve. Microsyst Technol 14(9):1751–1756. doi:10.1007/s00542-008-0594-3 CrossRefGoogle Scholar
  23. Liu W, Li L, Wang J, Tu Q, Ren L, Wang Y, Wang J (2012) Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device. Lab Chip 12:1702–1709. doi:10.1039/c2lc00034b CrossRefGoogle Scholar
  24. Loverich JJ, Kanno I, Kotera H (2006) Concepts for a new class of all-polymer micropumps. Lab Chip 6:1147–1154. doi:10.1039/b605525g CrossRefGoogle Scholar
  25. MacDonaldad J, Biyiklia K, Zugica B, Ebersolea G, Allora J (2005) Nucleation and growth of polymorphs of barbital on chemically modified surfaces in microfluidic channels. MRS Proc 901:0901-Ra07-04.1–0901-Ra07-04.7. doi:10.1557/PROC-0901-Ra07-04 Google Scholar
  26. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545. doi:10.1039/c2lc20799k CrossRefGoogle Scholar
  27. Pan T, McDonald S, Kai EM, Ziaie B (2005) A magnetically driven PDMS micropump with ball check-valves. J Micromech Microeng 15(5):1021–1026. doi:10.1088/0960-1317/15/5/018 CrossRefGoogle Scholar
  28. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64(1):77–85. doi:10.1016/S0924-4247(97)01657-9 CrossRefGoogle Scholar
  29. Pelrine R, Kornbluh R, Pei Q, Joesph J (2000a) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839. doi:10.1126/science.287.5454.836 CrossRefGoogle Scholar
  30. Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q, Chiba S (2000b) High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng, C 11(2):89–100. doi:10.1016/S0928-4931(00)00128-4 CrossRefGoogle Scholar
  31. Price AK, Anderson KM, Culbertson CT (2009) Demonstration of an integrated electroactive polymer actuator on a microfluidic electrophoresis device. Lab Chip 9:2076–2084. doi:10.1039/b823465e CrossRefGoogle Scholar
  32. Selvaganapathy P, Carlen ET, Mastrangelo CH (2003) Electrothermally actuated inline microfluidic valve. Sens Actuators A 104(3):275–282. doi:10.1016/s0924-4247(03)00030-x CrossRefGoogle Scholar
  33. Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22):3752–3765. doi:10.1039/c1lc20514e CrossRefGoogle Scholar
  34. Sounart TL, Michalske TA, Zavadil KR (2005) Frequency-dependent electrostatic actuation in microfluidic MEMS. J Microelectromech Syst 14(1):125–133. doi:10.1109/JMEMS.2004.839006 CrossRefGoogle Scholar
  35. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113 CrossRefGoogle Scholar
  36. VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in continuous cross flow in a molded microfluidic device. Anal Chem 78(11):3765–3771. doi:10.1021/ac060042r CrossRefGoogle Scholar
  37. VanDelinder V, Groisman A (2007) Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal Chem 79:2023–2030. doi:10.1021/ac061659b CrossRefGoogle Scholar
  38. Vaughan ET, Weaver JC (2005) Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields. Bioelectromagnetics 26(4):305–322. doi:10.1002/bem.20094 CrossRefGoogle Scholar
  39. Vyawahare S, Sitaula S, Martin S, Adalian D, Scherer A (2008) Electronic control of elastomeric microfluidic circuits with shape memory actuators. Lab Chip 8:1530–1535. doi:10.1039/b804515a CrossRefGoogle Scholar
  40. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058 CrossRefGoogle Scholar
  41. Willis PA, Hunt BD, White VE, Lee MC, Ikeda M, Bae S, Pelletier MJ, Grunthaner FJ (2007) Monolithic teflon® membrane valves and pumps for harsh chemical and low-temperature use. Lab Chip 7:1469–1474. doi:10.1039/b707892g CrossRefGoogle Scholar
  42. Wyser Y, Pelletier C, Lange J (2001) Predicting and determining the bending stiffness of thin films and laminates. Packag Technol Sci 14:97–108. doi:10.1002/pts.540 CrossRefGoogle Scholar
  43. Xie J, Shih J, Lin Q, Yang B, Tai YC (2004) Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip 4:495–501. doi:10.1039/b403906h CrossRefGoogle Scholar
  44. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:2006. doi:10.1038/nature05064 CrossRefGoogle Scholar
  45. Yu Z, Yuan W, Brochu P, Chen B, Liu Z, Pei Q (2009) Large-strain rigid-to-rigid deformation of bistable electroactive polymers. Appl Phys Lett 95(192904):1–3. doi:10.1063/1.3263729 Google Scholar
  46. Yu Z, Niu X, Brochu P, Yuan W, Li H, Chen B, Pei Q (2010) Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers. Proc SPIE 7642:76420C-1–76420C-9. doi:10.1117/12.847756 Google Scholar
  47. Yuan W, Hu L, Yu Z, Lam T, Biggs J, Ha S, Xi D, Chen B, Senesky MK, Grüner G, Pei Q (2008) Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater 20(3):621–625. doi:10.1002/adma.200701018 CrossRefGoogle Scholar
  48. Zhao X, Suo Z (2010) Theory of dielectric elastomers capable of giant deformation of actuation. Phys Rev Lett 104(178302):1–4. doi:10.1103/PhysRevLett.104.178302 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Coleman Murray
    • 1
  • David McCoul
    • 2
  • Elodie Sollier
    • 1
  • Taylor Ruggiero
    • 1
  • Xiaofan Niu
    • 2
  • Qibing Pei
    • 2
  • Dino Di Carlo
    • 1
  1. 1.Department of Bioengineering, Henry Samueli School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA

Personalised recommendations