Microfluidics and Nanofluidics

, Volume 14, Issue 1–2, pp 177–186 | Cite as

Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves

  • C. Neumann
  • A. Voigt
  • L. Pires
  • B. E. Rapp
Research Paper


In this paper, we describe a large-scale microfluidic valve platform for thermally actuated phase change (PC) microvalves. PC microvalves can be actuated by heat sources such as ohmic resistors, which can be highly integrated resulting in dense arrays of individually addressable microfluidic valves. We present a custom-made electronic platform with custom-written control software that allows controlling a total of 588 individually addressable resistors each of which can be used as the actuator for a separate PC valve. The platform is demonstrated with direct PC microvalve (the simplest example of a PC valve) where working fluid and phase change material are the same media. We present experimental results for single valve setups as well as for a 24 microvalve setup showing the scalability of the system. Furthermore, we demonstrate that precise and individual ‘per-resistor’ temperature profiles are required for valve actuation in order to decrease thermal latency and ensure that the time required for switching the valve state is independent from the “thermal history” (i.e. the duration of the previous valve state) of the valve. To the best of our knowledge, there is no such platform described in the literature, which offers an equal potential for individual valve operation (potentially up to 588 individual valves) as presented in this work.


Microfluidics Microfluidic valves Thermal actuation Phase change 



This work was funded in part by the ‚Concept for the Future’ of Karlsruhe Institute of Technology (KIT) within the framework of the German Excellence Initiative, a Max-Buchner Research fellowship (DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e. V., Grant #2676) as well as a travelling grant provided by the Karlsruhe House of Young Scientists (KHYS).

Supplementary material

10404_2012_1036_MOESM1_ESM.doc (835 kb)
Supplementary material 1 (DOC 835 kb)


  1. Bevan CD, Mutton IM (1995) Freeze-thaw flow management—a novel concept for high-performance liquid-chromatography, capillary electrophoresis, electrochromatography and associated techniques. J Chromatogr A 697(1–2):541–548. doi: 10.1016/0021-9673(94)00954-8 Google Scholar
  2. Cho S, Kang DK, Choo J, deMello AJ, Chang SI (2011) Recent advances in microfluidic technologies for biochemistry and molecular biology. BMB Rep 44(11):705–712. doi: 10.5483/BMBRep.2011.44.11.705 CrossRefGoogle Scholar
  3. Colin B, Mandrand B (1999) Vanne statique à congélation, et enceinte de traitement contrôlée par au moins une telle vanne. France Patent 01(09):1999Google Scholar
  4. Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210. doi: 10.1016/j.addr.2003.08.013 CrossRefGoogle Scholar
  5. Grodrian A, Metze J, Henkel T, Martin K, Roth M, Kohler JM (2004) Segmented flow generation by chip reactors for highly parallelized cell cultivation. Biosens Bioelectron 19(11):1421–1428. doi: 10.1016/j.bios.2003.12.021 CrossRefGoogle Scholar
  6. Gui L, Yu BY, Ren CL, Huissoon JP (2011) Microfluidic phase change valve with a two-level cooling/heating system. Microfluid Nanofluid 10(2):435–445. doi: 10.1007/s10404-010-0683-3 CrossRefGoogle Scholar
  7. Kabei N, Kosuda M, Kagamibuchi H, Tashiro R, Mizuno H, Ueda Y, Tsuchiya K (1997) A thermal-expansion-type microactuator with paraffin as the expansive material (basic performance of a prototype linear actuator). JSME Int J Ser C Mech Syst Mach Elem Manuf 40(4):736–742Google Scholar
  8. Lee CC, Sui GD, Elizarov A, Shu CYJ, Shin YS, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC, Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng HR (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310(5755):1793–1796. doi: 10.1126/science.1118919 CrossRefGoogle Scholar
  9. Liu RH, Bonanno J, Yang JN, Lenigk R, Grodzinski P (2004) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B Chem 98(2–3):328–336. doi: 10.1016/j.snb.2003.09.037 CrossRefGoogle Scholar
  10. Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys 36:213–231. doi: 10.1146/annurev.biophys.36.040306.132646 Google Scholar
  11. Neumann C, Voigt A, Rapp BE (2011) A large scale thermal microfluidic valve platform. In: Landers JP, Herr A, Juncker D, Pamme N, Bienvenue J (eds) The 15th international conference on miniaturized systems for chemistry and life sciences (μTAS 2011), Seattle, USA, 2011. pp 428–430Google Scholar
  12. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39. doi: 10.1088/0960-1317/16/5/r01 CrossRefGoogle Scholar
  13. Rapp BE, Carneiro L, Laenge K, Rapp M (2009) An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab Chip 9(2):354–356. doi: 10.1039/b815690e CrossRefGoogle Scholar
  14. Rapp BE, Duttenhofer T, Laenge K (2010) 20/100/400-channel chemically inert, reversibel parallel microfluidic connector as generic chip-to-world interface. In: Verpoorte S, Andersson-Swahn H, Emnéus J, Pamme N (eds) The 14th international conference on miniaturized systems for chemistry and life sciences (μTAS 2010), Groningen, The Netherlands, 2010. pp 1121–1123Google Scholar
  15. Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens Actuators B Chem 99(2–3):451–458. doi: 10.1016/j.snb.2003.12.014 CrossRefGoogle Scholar
  16. Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321(1–2):1–10. doi: 10.1016/s0009-8981(02)00093-1 CrossRefGoogle Scholar
  17. Takagi Y, Kojima Y, Mitani K (1995) Apparatus for and method of controlling the opening and closing of channel for liquid. Jpn Patent 05(04):1995Google Scholar
  18. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584. doi: 10.1126/science.1076996 CrossRefGoogle Scholar
  19. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi: 10.1126/science.288.5463.113 CrossRefGoogle Scholar
  20. Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3(12):2681–2716. doi: 10.1039/c1ay05253e CrossRefGoogle Scholar
  21. Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867. doi: 10.1109/jmems.2009.2024806 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations