Microfluidics and Nanofluidics

, Volume 13, Issue 6, pp 941–955 | Cite as

Functionalization of microfluidic devices for investigation of liquid crystal flows

  • Anupam SenguptaEmail author
  • Benjamin Schulz
  • Elena Ouskova
  • Christian Bahr
Research Paper


Systematic studies of thermotropic liquid crystals in confinement, such as liquid crystals in microfluidic channels, require control of the anchoring conditions on the surfaces. Especially for the case of uniform planar anchoring, the standard method involves a mechanical treatment (rubbing) of the surface that is not applicable to microfluidic devices. In the present study, we report methods for the achievement of well-defined anchoring conditions for liquid crystals in microfluidic channels consisting of polydimethylsiloxane and glass. Various physico-chemical techniques enable to establish homeotropic, degenerate planar, uniform planar, and hybrid anchoring conditions on the surface of the channel walls. We characterize the treated surfaces in terms of wettability and liquid crystal anchoring and determine the director field in the microchannels for the different anchoring configurations using polarizing optical microscopy and fluorescence confocal polarization microscopy. The relevance of the surface anchoring for the flow behavior of the liquid crystal in the microchannel is demonstrated by studying the onset of defect-mediated chaotic-like flow at high Ericksen numbers for the different anchoring cases.


Microfluidics Functionalization Liquid crystals Surface anchoring Anisotropic fluid flows 



This research was supported by the European Union (EC Marie Curie ITN project Hierarchy—PITN-CA-2008-215851). Helpful discussions with Stephan Herminghaus, Eric Stellamanns and Luciano De Sio are gratefully acknowledged.

Supplementary material

ESM1 (MPEG 4762 kb)


  1. Bai Y, Abbott NL (2011) Recent advances in colloidal and interfacial phenomena involving liquid crystals. Langmuir 27:5719–5738CrossRefGoogle Scholar
  2. de Gennes PG, Prost J (1995) The physics of liquid crystals. Oxford University Press, OxfordGoogle Scholar
  3. Denniston C, Orlandini E, Yeomans JM (2000) Simulations of liquid crystal hydrodynamics in the isotropic and nematic phases. Europhys Lett 52:481–487CrossRefGoogle Scholar
  4. Denniston C, Orlandini E, Yeomans JM (2001) Phase ordering in nematic liquid crystals. Phys Rev E 64:021701(11)Google Scholar
  5. Domachuk P, Tsioris K, Omenetto FG, Kaplan D (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22:249–260CrossRefGoogle Scholar
  6. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411CrossRefGoogle Scholar
  7. Feng J, Leal LG (1999) Pressure-driven channel flows of a model liquid-crystalline polymer. Phys Fluids 11:2821–2835zbMATHCrossRefGoogle Scholar
  8. Fernandez-Nieves A, Link DR, Marquez M, Weitz DA (2007a) Topological changes in bipolar nematic droplets under flow. Phys Rev Lett 98:087801(4)Google Scholar
  9. Fernandez-Nieves A, Vitelli V, Utada AS, Link DR, Márquez M, Nelson DR, Weitz DA (2007b) Novel defect structures in nematic liquid crystal shells. Phys Rev Lett 99:157801(5)Google Scholar
  10. Gerus I, Glushchenko A, Kwon SB, Reshetnyak V, Reznikov Y (2001) Anchoring of a liquid crystal on a photoaligning layer with varying surface morphology. Liq Cryst 28:1709–1713CrossRefGoogle Scholar
  11. Gettelfinger BT, Moreno-Razo JA, Koenig GM Jr, Hernandez-Ortiz JP, Abbott NL, de Pablo JJ (2010) Flow induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter 6:896–901CrossRefGoogle Scholar
  12. Gähwiller C (1972) Temperature dependence of flow alignment in nematic liquid crystals. Phys Rev Lett 28:1554–1556CrossRefGoogle Scholar
  13. Goodby JW, Saez IM, Cowling SJ, Görtz V, Draper M, Hall AW, Sia S, Cosquer G, Lee SE, Raynes EP (2008) Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed 47:2754–2787CrossRefGoogle Scholar
  14. Gvozdovskyy I, Kurioz Y, Reznikov Y (2009) Exposure and temperature dependences of contact angle of liquid crystals on photoaligning surface. Opt Electron Rev 17:116–119CrossRefGoogle Scholar
  15. Hamlington BD, Steinhaus B, Feng JJ, Link D, Shelly MJ, Shen AQ (2007) Liquid crystal droplet production in a microfluidic device. Liq Cryst 34:861–870CrossRefGoogle Scholar
  16. Holmes CJ, Cornford SL, Sambles JR (2009) Conoscopic observation of director reorientation during poiseuille flow of a nematic liquid crystal. Appl Phys Lett 95:171114(3)Google Scholar
  17. Holmes CJ, Cornford SL, Sambles JR (2010) Small surface pretilt strikingly affects the director profile during poiseuille flow of a nematic liquid crystal. Phys. Rev. Lett 104:248301(4)Google Scholar
  18. Horn BLV, Winter HH (2001) Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles. Appl Opt 40:2089–2094CrossRefGoogle Scholar
  19. Humar M, Muševič I (2010) 3d microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express 18:26995–27003CrossRefGoogle Scholar
  20. Humar M, Ravnik M, Pajk S, Muševič I (2009) Electrically tunable liquid crystal optical microresonators. Nat Photonics 3:595–600CrossRefGoogle Scholar
  21. Hung FR, Gettelfinger BT, Koenig GM, Abbott NL, de Pablo JJ (2007) Nanoparticles in nematic liquid crystals: Interactions with nanochannels. J Chem Phys 127:124702(10)Google Scholar
  22. Jenkins JT (1978) Flows of nematic liquid crystals. Annu Rev Fluid Mech 10:197–219CrossRefGoogle Scholar
  23. Jewell SA, Cornford SL, Yang F, Cann PS, Sambles JR (2009) Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell. Phys Rev E 80:0741706(5)Google Scholar
  24. Jérôme B (1991) Surface effects and anchoring in liquid crystals. Rep Prog Phys 54:391–451CrossRefGoogle Scholar
  25. Kim J, Chaudhury MK, Owen MJ, Orbeck T (2001) The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J Coll Int Sci 244:200–207Google Scholar
  26. Kim B, Peterson ETK, Papautsky I (2004) Long-term stability of plasma oxidized pdms surfaces. Proc IEEE Eng Med Biol Soc 7:5013–5016Google Scholar
  27. Kim YH, Yoon DK, Jeong HS, Jung HT (2010) Self-assembled periodic liquid crystal defects array for soft lithographic template. Soft Matter 6:1426–1431CrossRefGoogle Scholar
  28. Krekhov AP, Toth TBP, Buka A, Kramer L (2000) Nematic liquid crystals under oscillatory shear flow. Phys Rep 337:171–192CrossRefGoogle Scholar
  29. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554CrossRefGoogle Scholar
  30. Li LYCM, Zhou Q, Luong JH (2007) Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconj Chem 18:281–284CrossRefGoogle Scholar
  31. Lopez-Leon T, Fernandez-Nieves A (2009) Topological transformations in bipolar shells of nematic liquid crystals. Phys Rev E 79:021707(5)Google Scholar
  32. Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202CrossRefGoogle Scholar
  33. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRefGoogle Scholar
  34. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRefGoogle Scholar
  35. Muševič I, Škarabot M (2008) Self-assembly of nematic colloids. Soft Matter 4:195–199CrossRefGoogle Scholar
  36. Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S (2006) Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313:954–958CrossRefGoogle Scholar
  37. Nghe P, Terriac E, Schneider M, Li ZZ, Cloitre M, Abecassis B, Tabeling P (2011) Trends in microfluidics with complex fluids. Lab Chip 11:788–794CrossRefGoogle Scholar
  38. Oswald P, Pieranski P (2005) Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments. Taylor & Francis, LondonGoogle Scholar
  39. Pfohl T, Mugele F, Seemann R, Herminghaus S (2003) Microfluidics and complex fluids. Chem Phys Chem 4:1291–1298CrossRefGoogle Scholar
  40. Pieranski P, Guyon E (1974) Two shear-flow regimes in nematic p-n-hexyloxybenzilidene-p′-aminobenzonitrile. Phys Rev Lett 32:924–926CrossRefGoogle Scholar
  41. Poulin P, Stark H, Lubensky TC, Weitz DA (1997) Novel colloidal interactions in anisotropic fluids. Science 275:1770–1773CrossRefGoogle Scholar
  42. Price AD, Schwartz DK (2006) Anchoring of a nematic liquid crystal on a wettability gradient. Langmuir 22:9753–9759CrossRefGoogle Scholar
  43. Rasing T, Musevic I (2004) Surfaces and interfaces of liquid crystals. Springer, BerlinGoogle Scholar
  44. Rastegar A, Skarabot M, Blij B, Rasing T (2001) Mechanism of liquid crystal alignment on submicron patterned surfaces. J Appl Phys 89:960–968CrossRefGoogle Scholar
  45. Rey AD, Denn MM (2002) Dynamical phenomena in liquid-crystalline materials. Annu Rev Fluid Mech 34:233–266MathSciNetCrossRefGoogle Scholar
  46. Sengupta A, Herminghaus S, Bahr C (2011a) Nematic liquid crystals and nematic colloids in microfluidic environment. Mol Cryst Liq Cryst 547:203–212CrossRefGoogle Scholar
  47. Sengupta A, Tkalec U, Bahr C (2011b) Nematic textures in microfluidic environment. Soft Matter 7:6542–6549CrossRefGoogle Scholar
  48. Shiyanovskii IISSV, Lavrentovich OD (2001) Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy. Chem Phys Lett 336:88–96CrossRefGoogle Scholar
  49. Shojaei-Zadeh S, Anna SL (2006) Role of surface anchoring and geometric confinement on focal conic textures in smectic-a liquid crystals. Langmuir 22:9986–9993CrossRefGoogle Scholar
  50. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356CrossRefGoogle Scholar
  51. Sonin AA (1995) The surface physics of liquid crystals. Gordon and Breach, AmsterdamGoogle Scholar
  52. Stark H, Ventzki D (2001) Stokes drag of spherical particles in a nematic environment at low ericksen numbers. Phys Rev E 64:031711(9)Google Scholar
  53. Tajalli H, Gilani AG, Zakerhamidi MS, Tajalli P (2008) The photophysical properties of nile red and nile blue in ordered anisotropic media. Dyes Pigments 78:15–24CrossRefGoogle Scholar
  54. Toth G, Denniston C, Yeomans JM (2002) Hydrodynamics of topological defects in nematic liquid crystals. Phys Rev Lett 88:105504(4)Google Scholar
  55. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  56. Yaroshchuk O, Reznikov Y (2012) Photoalignment of liquid crystals: basics and current trends. J Mater Chem 22:286–300CrossRefGoogle Scholar
  57. Yokoyama H (1988) Surface anchoring of nematic liquid crystals. Mol Cryst Liq Cryst 165:265–316Google Scholar
  58. Yoon DK, Choi MC, Kim YH, Kim MW, Lavrentovich OD, Jung HT (2007) Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. Nature Mater 6:866–870CrossRefGoogle Scholar
  59. Zakharov AV, Dong RY (2002) Two shear flow regimes in nematic liquid crystals: Near a charged surface and in the bulk. J Chem Phys 116:6348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anupam Sengupta
    • 1
    Email author
  • Benjamin Schulz
    • 1
  • Elena Ouskova
    • 2
  • Christian Bahr
    • 1
  1. 1.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  2. 2.Department of Applied PhysicsAalto University School of ScienceAaltoFinland

Personalised recommendations