Microfluidics and Nanofluidics

, Volume 13, Issue 5, pp 799–807 | Cite as

Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport

  • Siddhartha Das
  • Suman Chakraborty
  • Sushanta K. MitraEmail author
Research Paper


In this paper, we bring out the implications of a spatially varying magnetic field towards combined magnetohydrodynamic–magnetophoretic transport in narrow fluidic confinements. We first present a generic framework for describing the flow field that is generated under the combined influences of a driving pressure gradient, an axial electric field, and a spatially varying transverse magnetic field. As a demonstrative example, we derive analytical solutions for the flow field, based on a plausible choice of the mathematical form of the nature of spatial variation of the magnetic field. Proceeding further ahead, we also address the magnetophoretic motion of particles, subjected to such spatially varying magnetic fields. We depict the trajectories of representative spherical particles in the flow-field, as a combined consequence of the magnetohydrodynamic and magnetophoretic forcing mechanisms. We also demonstrate that such combined magnetophoretic and magnetohydrodynamic transport can be employed as a novel technique to separate particles based on sizes and electromagnetic properties.


Magnetohydrodynamics Magnetophoresis Microchannel Electroosmosis 



The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for providing financial support to S.D. in form of the Banting Postdoctoral Fellowship.


  1. Andreu JS, Camacho J, Faraudo J, Benelmekki M, Rebollo C, Martinez LM (2011) Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient. Phys Rev E 84:021402CrossRefGoogle Scholar
  2. Annavarapu VNR (2010) Size based separation of submicron nonmagnetic particles through magnetophoresis in structured obstacle arrays. PhD dissertation, MIT, CambridgeGoogle Scholar
  3. Benelmekki M, Montras A, Martins AJ, Coutinho PJG, Martinez LM (2011) Magnetophoresis behaviour at low gradient magnetic field and size control of nickel single core nanobeads. J Magn Magn Mater 323:1945–1949CrossRefGoogle Scholar
  4. Carstoiu J (1968) Fundamental equations of electromagnetodynamics of fluids: various consequences. Proc Natl Acad Sci USA 59:326–331CrossRefGoogle Scholar
  5. Chakraborty S, Paul D (2006) Microchannel flow control through a combined electromagnetohydrodynamic transport. J Phys D: Appl Phys 39:5364–5371CrossRefGoogle Scholar
  6. Das S, Chakraborty S (2008a) Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements. Electrophoresis 29:1115–1124CrossRefGoogle Scholar
  7. Das S, Chakraborty S (2008b) Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels. Langmuir 24:7704–7710CrossRefGoogle Scholar
  8. Das S, Chakraborty S (2009) Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions. Langmuir 25:9863–9872CrossRefGoogle Scholar
  9. De Las Cuevas G, Faraudo J, Camacho J (2008) Low-gradient magnetophoresis through field-induced reversible aggregation. J Phys Chem C 112:945–950CrossRefGoogle Scholar
  10. Erb RM, Yellen BB (2009) Magnetic manipulation of colloidal particles. In: Liu JP (ed) Nanoscale magnetic materials and applications. Springer, New York, pp 563–590Google Scholar
  11. Furlani EP (2006) Analysis of particle transport in a magnetophoretic microsystem. J Appl Phys 99(2):024912CrossRefGoogle Scholar
  12. Furlani EP (2007) Magnetophoretic separation of blood cells at the microscale. J Phys D Appl Phys 40:1313–1319CrossRefGoogle Scholar
  13. Furlani EJ, Furlani EP (2007) A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J Magn Magn Mat 312(1):187–193CrossRefGoogle Scholar
  14. Furlani EP, Ng KC (2006) Analytical model of magnetic nanoparticle capture in the microvasculature. Phys Rev E 73(6):Art. No. 061919, Part 1Google Scholar
  15. Furlani EP, Sahoo Y (2006) Analytical model for the magnetic field and force in a magnetophoretic microsystem. J Phys D Appl Phys 39:1724–1732CrossRefGoogle Scholar
  16. Furlani EP, Sahoo Y, Ng KC, Wortman JC, Monk TE (2007) A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdev 9(4):451–463CrossRefGoogle Scholar
  17. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40Google Scholar
  18. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563CrossRefGoogle Scholar
  19. Gunde AC, Mitra SK (2009) Simulation of flow control in microchannels using ferrofluid plugs. In: Proceedings of the 7th international conference on nanochannels, microchannels, and minichannels 2009, ICNMM2009 (Part B), pp 985–989Google Scholar
  20. Han KH, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273CrossRefGoogle Scholar
  21. Helseth LE, Skodvin T (2009) Optical monitoring of low-field magnetophoretic separation of particles. Meas Sci Technol 20:095202CrossRefGoogle Scholar
  22. Jones TB (1995) Electromechanics of particles. Cambridge University Press, New YorkGoogle Scholar
  23. Jung YD, Choi Y, Han KH, Fraizer AB (2010) Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed Microdev 12:637–645CrossRefGoogle Scholar
  24. Kashevskii BE, Kashevskii SB, Prokhorov IV, Aleksandrova EN, Istomin YP (2006) Magnetophoresis and the magnetic susceptibility of HeLa tumor cells. Cell Biophys 51:1026–1032Google Scholar
  25. Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, CambridgeGoogle Scholar
  26. Li P, Mahmood A, Lee GU (2011) Flow-enhanced nonlinear magnetophoresis for high-resolution bioseparation. Langmuir 27:6496–6503CrossRefGoogle Scholar
  27. Lim J, Lanni C, Evarts ER, Lanni F, Tilton RD, Majetich SA (2011) Magnetophoresis of nanoparticles. ACS Nano 5:217–226CrossRefGoogle Scholar
  28. Liu CX, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105:102011–102014CrossRefGoogle Scholar
  29. Munshi F, Chakraborty S (2009) Hydroelectrical energy conversion in narrow confinements in the presence of transverse magnetic fields with electrokinetic effects. Phys Fluid 21:122003CrossRefGoogle Scholar
  30. Mikkelsen C, Hansen MF, Bruus H (2005) Theoretical comparison of magnetic and hydrodynamic interactions between magnetically tagged particles in microfluidic systems. J Magn Magn Mater 293:578–583CrossRefGoogle Scholar
  31. Nandy K, Chaudhuri S, Ganguly R, Puri IK (2008) Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J Magn Magn Mat 320:1398–1405CrossRefGoogle Scholar
  32. Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16CrossRefGoogle Scholar
  33. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38CrossRefGoogle Scholar
  34. Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76:7250–7256CrossRefGoogle Scholar
  35. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980CrossRefGoogle Scholar
  36. Paul D, Chakraborty S (2007) Wall effects in microchannel-based macromolecular separation under electromagnetohydrodynamic influences. J App Phys 102:074921CrossRefGoogle Scholar
  37. Qin M, Bau HH (2011) When MHD-based microfluidics is equivalent to pressure-driven flow. Microfluid Nanofluid 10:287–300CrossRefGoogle Scholar
  38. Rosensweig RE (1987) Magnetic fluids. Annu Rev Fluid Mech 19:437–463CrossRefGoogle Scholar
  39. Smoluchowski M (1903) Contribution la thorie lendosmose lectrique et de quelques phnomnes corrlatifs. Krak Anz 8:182–199Google Scholar
  40. Suwa M, Watarai H (2011) Magnetoanalysis of micro/nanoparticles: a review. Anal Chim Acta 690:137–147CrossRefGoogle Scholar
  41. Watarai H, Suwa M, Iiguni Y (2004) Magnetophoresis and electromagnetophoresis of microparticles in liquids. Anal Bioanal Chem 378:1693–1699CrossRefGoogle Scholar
  42. Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967CrossRefGoogle Scholar
  43. Yellen BB, Friedman G (2004) Programmable assembly of colloidal particles using magnetic microwell templates. Langmuir 20:2553–2559CrossRefGoogle Scholar
  44. Yellen BB, Friedman G, Feinerman A (2003) Printing superparamagnetic colloidal particle arrays on patterned magnetic film. J Appl Phys 93:7331–7333CrossRefGoogle Scholar
  45. Yellen BB, Hovorka O, Friedman G (2005) Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci USA 102:8860–8864CrossRefGoogle Scholar
  46. Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechtery AN (2003) Red blood cell magnetophoresis. Biophys J 84:2638–2645CrossRefGoogle Scholar
  47. Zhu TT, Marrero F, Mao LD (2010) Continuous separation of nonmagnetic particles inside ferrofluids. Microfluid Nanofluid 9:1003–1009CrossRefGoogle Scholar
  48. Zhu J, Liang L, Xuan X (2012) On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluid Nanofluid 12:65–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Siddhartha Das
    • 1
  • Suman Chakraborty
    • 2
  • Sushanta K. Mitra
    • 1
    Email author
  1. 1.Micro and Nano-scale Transport Laboratory, Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Mechanical Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations