Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics
Abstract
In recent years a strong need has been realised for the creation of low-cost diagnostics for use in impoverished regions of the world. The use of paper has been championed for this purpose by many research groups globally over the past 5 years, leading to the formation of a large body of knowledge. This work reviews and summarises the many techniques developed to date for the patterning of paper substrates to create channels for the flow of liquids. The work also explores methods for increasing the functionality of paper-based microfluidics, the detection mechanisms employed so far and some of the interesting applications addressed. The review will also investigate the recent use of some alternative materials—both as primary substrates and in hybrids—which will become progressively more important in the future.
Keywords
Low-cost Point-of-care Patterned paper Microfluidics Diagnostics ThreadNotes
Acknowledgments
This work is supported by the Australian Research Council Grant (DP1094179). The research scholarships of Monash University and the Department of Chemical Engineering, as well as the Monash Postgraduate Publications Award are gratefully acknowledged. The authors would also like to extend their gratitude to the copyright owners of the many figures which were permitted to be reproduced within this work.
References
- Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934. doi: 10.1021/ac800604v CrossRefGoogle Scholar
- Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893. doi: 10.1007/s00216-010-4011-2 CrossRefGoogle Scholar
- Al-Tamimi M, Shen W, Zeineddine R, Tran H, Garnier G (2011) Validation of paper-based assay for rapid blood typing. Anal Chem 84(3):1661–1668. doi: 10.1021/ac202948t CrossRefGoogle Scholar
- Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732. doi: 10.1021/ac9022555 CrossRefGoogle Scholar
- Ballerini DR, Li X, Shen W (2011a) Flow control concepts for thread-based microfluidic devices. Biomicrofluidics 5:14105. doi: 10.1063/1.3567094 CrossRefGoogle Scholar
- Ballerini DR, Li X, Shen W (2011b) An inexpensive thread-based system for simple and rapid blood grouping. Anal Bioanal Chem 399(5):1869–1875. doi: 10.1007/s00216-010-4588-5 CrossRefGoogle Scholar
- Balu B, Berry AD, Hess DW, Breedveld V (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9(21):3066–3075CrossRefGoogle Scholar
- Bhandari P, Narahari T, Dendukuri D (2011) ‘Fab-Chips’: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab Chip 11(15):2493–2499CrossRefGoogle Scholar
- Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80(9):3387–3392. doi: 10.1021/ac702605a CrossRefGoogle Scholar
- Carrilho E, Martinez AW, Whitesides GM (2009a) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095. doi: 10.1021/ac901071p CrossRefGoogle Scholar
- Carrilho E, Phillips ST, Vella SJ, Martinez AW, Whitesides GM (2009b) Paper microzone plates. Anal Chem 81(15):5990–5998. doi: 10.1021/ac900847g CrossRefGoogle Scholar
- Cheng C-M, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed 49(28):4771–4774. doi: 10.1002/anie.201001005 CrossRefGoogle Scholar
- Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11(6):1161–1165CrossRefGoogle Scholar
- Comer JP (1956) Semiquantitative specific test paper for glucose in urine. Anal Chem 28(11):1748–1750. doi: 10.1021/ac60119a030 CrossRefGoogle Scholar
- Crosland MP (2004) Gay-Lussac: Scientist and Bourgeois. Cambridge University Press, CambridgeGoogle Scholar
- Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem. doi: 10.1021/ac102392t Google Scholar
- Dungchai W (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826CrossRefGoogle Scholar
- Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674(2):227–233. doi: 10.1016/j.aca.2010.06.019 CrossRefGoogle Scholar
- Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82CrossRefGoogle Scholar
- Eisenbach GM, Stolte H, Brod J (1975) Proteinuria. S. Karger, BaselGoogle Scholar
- Ellerbee AK, Phillips ST, Siegel AC, Mirica KA, Martinez AW, Striehl P, Jain N, Prentiss M, Whitesides GM (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem 81(20):8447–8452. doi: 10.1021/ac901307q CrossRefGoogle Scholar
- Ettre L (2001) The predawn of paper chromatography. Chromatographia 54(5):409–414. doi: 10.1007/bf02492694 CrossRefGoogle Scholar
- Fenton EM, Mascarenas MR, López GP, Sibbett SS (2008) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1(1):124–129. doi: 10.1021/am800043z CrossRefGoogle Scholar
- Free AH, Adams EC, Kercher ML, Free HM, Cook MH (1957) Simple specific test for urine glucose. Clin Chem 3(3):163–168Google Scholar
- Free HM, Collins GF, Free AH (1960) Triple-test strip for urinary glucose, protein, and pH. Clin Chem 6(4):352–361Google Scholar
- Fu E, Kauffman P, Lutz B, Yager P (2010a) Chemical signal amplification in two-dimensional paper networks. Sens Actuators B Chem 149(1):325–328. doi: 10.1016/j.snb.2010.06.024 CrossRefGoogle Scholar
- Fu E, Lutz B, Kauffman P, Yager P (2010b) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10(7):918–920CrossRefGoogle Scholar
- Fu E, Ramsey S, Kauffman P, Lutz B, Yager P (2010c) Transport in two-dimensional paper networks. Microfluid Nanofluid 1–7. doi: 10.1007/s10404-010-0643-y
- Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B, Yager P (2011) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83(20):7941–7946. doi: 10.1021/ac201950g CrossRefGoogle Scholar
- Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Bohringer KF (2011) Microfluidic origami for point-of-care extraction of nucleic acids from viscous samples. In: 2011 IEEE 24th international conference on micro electro mechanical systems (MEMS) 23–27 Jan., pp 932–935. doi: 10.1109/memsys.2011.5734579
- Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Bohringer KF (2012) A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12(1):174–181CrossRefGoogle Scholar
- Hallman R (2002) The living environment: biology. Hal Leonard Corp, WinonaGoogle Scholar
- Hunter D (1978) Papermaking: the history and technique of an ancient craft. Dover, NYGoogle Scholar
- Jinhee J, Ki-Ho H (2009) Lateral-driven continuous magnetophoretic microseparator for separating blood cells based on their native magnetic properties. In: International conference on solid-state sensors, actuators and microsystems. TRANSDUCERS 2009, 21–25 June, pp 620–623Google Scholar
- Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem 84(6):2900–2907. doi: 10.1021/ac203466y CrossRefGoogle Scholar
- Khan MS, Thouas G, Shen W, Whyte G, Garnier G (2010) Paper diagnostic for instantaneous blood typing. Anal Chem 82(10):4158–4164. doi: 10.1021/ac100341n CrossRefGoogle Scholar
- Klasner S, Price A, Hoeman K, Wilson R, Bell K, Culbertson C (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397(5):1821–1829. doi: 10.1007/s00216-010-3718-4 CrossRefGoogle Scholar
- Kunkel HG, Tiselius A (1951) Electrophoresis of proteins on filter paper. J Gen Physiol 35(1):89–118. doi: 101085/jgp.35.1.89 CrossRefGoogle Scholar
- Kuo JS, Chiu DT (2011) Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. Lab Chip 11(16):2656–2665CrossRefGoogle Scholar
- LeRoith D, Taylor SI, Olefsky JM (2004) Diabetes mellitus: a fundamental and clinical text. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
- Leung V, Shehata A-AM, Filipe CDM, Pelton R (2010) Streaming potential sensing in paper-based microfluidic channels. Colloids Surf A 364(1–3):16–18. doi: 10.1016/j.colsurfa.2010.04.008 CrossRefGoogle Scholar
- Li X, Tian J, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80(23):9131–9134. doi: 10.1021/ac801729t CrossRefGoogle Scholar
- Li X, Tian J, Shen W (2009) Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl Mater Interfaces 2(1):1–6. doi: 10.1021/am9006148 CrossRefGoogle Scholar
- Li X, Tian J, Garnier G, Shen W (2010a) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B 76(2):564–570. doi: 10.1016/j.colsurfb.2009.12.023 CrossRefGoogle Scholar
- Li X, Tian J, Shen W (2010b) Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem 396(1):495–501. doi: 10.1007/s00216-009-3195-9 CrossRefGoogle Scholar
- Li M, Tian J, Al-Tamimi M, Shen W (2012a) Paper-based blood typing device that reports patient’s blood type “in writing”. Angewandte Chemie Int Edn. doi: 10.1002/anie.201201822 Google Scholar
- Li X, Ballerini DR, Shen W (2012b) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(1):011301CrossRefGoogle Scholar
- Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of Origami. J Am Chem Soc 133(44):17564–17566. doi: 10.1021/ja2071779 CrossRefGoogle Scholar
- Liu H, Crooks RM (2012) Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem 84(5):2528–2532. doi: 10.1021/ac203457h CrossRefGoogle Scholar
- Liu Y, Sun Y, Sun K, Song L, Jiang X (2010) Recent developments employing new materials for readout in lab-on-a-chip. J Mater Chem 20(35):7305–7311CrossRefGoogle Scholar
- Lötters JC et al (1997) The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromech Microeng 7(3):145CrossRefGoogle Scholar
- Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500CrossRefGoogle Scholar
- Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J (2011) Paper-based planar reaction arrays for printed diagnostics. Sens Actuators B Chem 160(1):1404–1412. doi: 10.1016/j.snb.2011.09.086 CrossRefGoogle Scholar
- Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Tropical infectious diseases: diagnostics for the developing world. Nat Rev Microbiol 2(3):231–240CrossRefGoogle Scholar
- Martinez AW, Phillips Scott T, Butte Manish J, Whitesides George M (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320CrossRefGoogle Scholar
- Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008a) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time. Off-site diagnosis. Anal Chem 80(10):3699–3707. doi: 10.1021/ac800112r CrossRefGoogle Scholar
- Martinez AW, Phillips ST, Whitesides GM (2008b) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105(50):19606–19611. doi: 10.1073/pnas.0810903105 CrossRefGoogle Scholar
- Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008c) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150CrossRefGoogle Scholar
- Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
- Martinez AW, Phillips ST, Nie Z, Cheng C-M, Carrilho E, Wiley BJ, Whitesides GM (2010) Programmable diagnostic devices made from paper and tape. Lab Chip 10(19):2499–2504CrossRefGoogle Scholar
- Morgan ED, Wilson ID (2004) An early description of paper chromatography? Chromatographia 60(1):135–136. doi: 10.1365/s10337-004-0316-7 CrossRefGoogle Scholar
- Müller RH, Clegg DL (1949) Automatic paper chromatography. Anal Chem 21(9):1123–1125. doi: 10.1021/ac60033a032 CrossRefGoogle Scholar
- Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483CrossRefGoogle Scholar
- Nilghaz A, Wicaksono DHB, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12(1):209–218CrossRefGoogle Scholar
- Noh H, Phillips ST (2010a) Fluidic timers for time-dependent point-of-care assays on paper. Anal Chem 82(19):8071–8078. doi: 10.1021/ac1005537 CrossRefGoogle Scholar
- Noh H, Phillips ST (2010b) Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal Chem 82(10):4181–4187. doi: 10.1021/ac100431y CrossRefGoogle Scholar
- Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82(24):10246–10250. doi: 10.1021/ac1027066 CrossRefGoogle Scholar
- Oosterbroek R, Berg A (2003) Lab-on-a-chip: miniaturized systems for (bio)chemical analysis and synthesis. Elsevier, AmsterdamGoogle Scholar
- Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10(20):2659–2665CrossRefGoogle Scholar
- Reches M, Mirica KA, Dasgupta R, Dickey MD, Butte MJ, Whitesides GM (2010) Thread as a matrix for biomedical assays. ACS Appl Mater Interfaces 2(6):1722–1728. doi: 10.1021/am1002266 CrossRefGoogle Scholar
- Roberts JC (1996) Paper chemistry. Blackie Academic & Professional, GlasgowGoogle Scholar
- Safavieh R, Mirzaei M, Qasaimeh MA, Juncker D (2009) Yarn based microfluidics: from basic elements to complex circuits. In: Paper presented at the MicroTAS 2009, The thirteenth international conference on miniaturized systems for chemistry and life sciences, Jeju, South Korea, 1st–5th NovemberGoogle Scholar
- Safavieh R, Zhou GZ, Juncker D (2011) Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations. Lab Chip 11(15):2618–2624CrossRefGoogle Scholar
- Schilling KM, Lepore AL, Kurian JA, Martinez AW (2012) Fully enclosed microfluidic paper-based analytical devices. Anal Chem 84(3):1579–1585. doi: 10.1021/ac202837s CrossRefGoogle Scholar
- Sharma H, Nguyen D, Chen A, Lew V, Khine M (2011) Unconventional low-cost fabrication and patterning techniques for point of care diagnostics. Ann Biomed Eng 39(4):1313–1327. doi: 10.1007/s10439-010-0213-1 CrossRefGoogle Scholar
- Shen W, Filonanko Y, Truong Y, Parker IH, Brack N, Pigram P, Liesegang J (2000) Contact angle measurement and surface energetics of sized and unsized paper. Colloids Surf A 173(1–3):117–126. doi: 10.1016/s0927-7757(00)00454-4 CrossRefGoogle Scholar
- Tan SN, Ge L, Wang W (2010) Paper disk on screen printed electrode for one-step sensing with an internal standard. Anal Chem 82(21):8844–8847. doi: 10.1021/ac1015062 CrossRefGoogle Scholar
- Thom NK, Yeung K, Pillion MB, Phillips ST (2012) “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12:1768–1770CrossRefGoogle Scholar
- Tian J, Kannangara D, Li X, Shen W (2010) Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency. Lab on a Chip 10(17):2258–2264Google Scholar
- Tian J, Li X, Shen W (2011) Printed two-dimensional micro-zone plates for chemical analysis and ELISA. Lab Chip 11(17):2869–2875CrossRefGoogle Scholar
- Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM (2012) Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem 84(6):2883–2891. doi: 10.1021/ac203434x CrossRefGoogle Scholar
- Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3(12):2681–2716Google Scholar
- Wong AP, Gupta M, Shevkoplyas SS, Whitesides GM (2008) Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings. Lab Chip 8(12):2032–2037CrossRefGoogle Scholar
- Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418CrossRefGoogle Scholar
- Yagoda H (1937) Applications of confined spot tests in analytical chemistry: preliminary paper. Ind Eng Chem Anal Ed 9(2):79–82. doi: 10.1021/ac50106a012 CrossRefGoogle Scholar
- Yang X, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12(2):274–280CrossRefGoogle Scholar
- Zhao W, Van den Berg A (2008) Lab on paper. Lab on a Chip 8(12):1988–1991Google Scholar
- Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9(15):2363–2371. doi: 10.1002/cbic.200800282 CrossRefGoogle Scholar
- Zhou GZ, Safavieh R, Mao X, Juncker D (2010) Immunoassay on cotton yarn for low-cost diagnostics Paper presented at the MicroTAS 2010, The 14th international conference on miniaturized systems for chemistry and life sciences, Groningen, The Netherlands, 3rd–7th OctoberGoogle Scholar