Microfluidics and Nanofluidics

, Volume 13, Issue 5, pp 697–701 | Cite as

Efficiency of size-dependent particle separation by pinched flow fractionation

  • Aparna Srivastav
  • Thomas Podgorski
  • Gwennou CoupierEmail author
Research Paper


Pinched flow fractionation is shown to be an efficient and selective way to quickly separate particles by size in a very polydisperse semi-concentrated suspension. In an effort to optimize the method, we discuss the quantitative influence of the pinching intensity in the balance between the requirements of selectivity and minimal dilution.


Particle separation Pinched-flow fractionation 


  1. Andersen KB, Levinsen S, Svendsen WE, Okkels F (2009) A generalized theoretical model for “continuous particle separation in a microchannel having asymmetrically arranged multiple branches”. Lab Chip 9:1638–1639CrossRefGoogle Scholar
  2. Angelova MI, Soleau S, Meleard P, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external AC electric fields: kinetics and applications. Progr Colloid Polym Sci 89:127–131CrossRefGoogle Scholar
  3. Coupier G, Kaoui B, Podgorski T, Misbah C (2008) Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys Fluids 20:11702CrossRefGoogle Scholar
  4. Jain A, Posner JD (2008) Particle dispersion and separation resolution of pinched flow fractionation. Anal Chem 80:1641–1648CrossRefGoogle Scholar
  5. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET J Nanobiotechnol 2:1–13CrossRefGoogle Scholar
  6. Luo M, Sweeney F, Risbud SR, Drazer G, Frechette J (2011) Irreversibility and pinching in deterministic particle separation. Appl Phys Lett 99:064102CrossRefGoogle Scholar
  7. Maenaka H, Yamada M, Yasuda M, Seki M (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24:4405–4410CrossRefGoogle Scholar
  8. Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M (2011) Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluid Nanofluid 11:105–110CrossRefGoogle Scholar
  9. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab chip 7:1644–1659CrossRefGoogle Scholar
  10. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328CrossRefGoogle Scholar
  11. Sai Y, Yamada M, Yasuda M, Seki M (2006) Continuous separation of particles using a microfluidic device equipped with flow rate control valves. J Chrom A 1127:214CrossRefGoogle Scholar
  12. Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210CrossRefGoogle Scholar
  13. Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784CrossRefGoogle Scholar
  14. Vig AL, Kristensen A (2008) Separation enhancement in pinched flow fractionation. Appl Phys Lett 93:203507CrossRefGoogle Scholar
  15. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465CrossRefGoogle Scholar
  16. Zhang X, Cooper JM, Monaghan PB, Haswell SJ (2006) Continuous flow separation of particles within an asymmetric microfluidic device. Lab Chip 6:561–566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Aparna Srivastav
    • 1
  • Thomas Podgorski
    • 1
  • Gwennou Coupier
    • 1
    Email author
  1. 1.Laboratoire Interdisciplinaire de PhysiqueCNRS et Université J. Fourier-Grenoble ISaint-Martin d’HèresFrance

Personalised recommendations