Microfluidics and Nanofluidics

, Volume 13, Issue 2, pp 205–216 | Cite as

Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis

Review Paper

Abstract

Surface enhanced Raman spectroscopy (SERS) leverages the specificity of Raman scattering and the sensitivity provided by localized plasmonic effects for applications in chemical and biomolecular detection. However, nearly four decades after the first report of SERS, practical uses of the technique remain limited. Optofluidic SERS—the synergistic use of microfluidics to improve the performance of SERS—may finally lead to practical devices for chemical and biomolecular detection. In this review, we describe recent advances in optofluidic SERS microsystems that have been developed to improve the performance and applicability of SERS. These techniques include designs that improve the light–analyte interaction, that perform active or passive concentration of metal nanoparticles and/or analyte molecules, and that utilize microfluidic techniques to improve functionality. In addition, we present optofluidic SERS techniques that enable new applications that have not been possible before the advent of optofluidics. Finally, we project future advances in optofluidic SERS and present a vision for the disruptive technologies that will enable the translation of SERS from the research lab to practical uses.

Keywords

Optofluidics Surface enhanced Raman spectroscopy Chemical sensors Biosensors 

References

  1. Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8:2665–2670CrossRefGoogle Scholar
  2. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  3. Arnold S, Keng D, Shopova SI et al (2009) Whispering Gallery Mode Carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt Express 17:6230–6238CrossRefGoogle Scholar
  4. Baehr-Jones T, Hochberg M, Walker C, Scherer A (2005) High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl Phys Lett 86:081101CrossRefGoogle Scholar
  5. Bog U, Smith CLC, Lee MW et al (2008) High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures. Opt Lett 33:2206–2208CrossRefGoogle Scholar
  6. Cai M, Painter O, Vahala K (2000) Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys Rev Lett 85:74–77CrossRefGoogle Scholar
  7. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540CrossRefGoogle Scholar
  8. Cecchini MP, Hong J, Lim C et al (2011) Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems. Anal Chem 83:3076–3081CrossRefGoogle Scholar
  9. Cho H, Lee B, Liu GL et al (2009) Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip 9:3360–3363CrossRefGoogle Scholar
  10. Choi I, Huh YS, Erickson D (2011) Size-selective concentration and label-free characterization of protein aggregates using a Raman active nanofluidic device. Lab Chip 11:632–638CrossRefGoogle Scholar
  11. Chou I-H, Benford M, Beier HT et al (2008) Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano Lett 8:1729–1735CrossRefGoogle Scholar
  12. Culha M, Stokes D, Allain LR, Vo-Dinh T (2003) Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal Chem 75:6196–6201CrossRefGoogle Scholar
  13. Driskell JD, Seto AG, Jones LP et al (2008) Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron 24:923–928CrossRefGoogle Scholar
  14. Erickson D, Serey X, Chen Y-F, Mandal S (2011a) Nanomanipulation using near field photonics. Lab Chip 11:995–1009CrossRefGoogle Scholar
  15. Erickson D, Sinton D, Psaltis D (2011b) Optofluidics for energy applications. Nat Photonics 5:583–590CrossRefGoogle Scholar
  16. Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82:10015–10020CrossRefGoogle Scholar
  17. Fabris L, Dante M, Braun G et al (2007) A heterogeneous PNA-based SERS method for DNA detection. J Am Chem Soc 129:6086–6087CrossRefGoogle Scholar
  18. Fainman Y, Lee L, Psaltis D, Yang C (2010) Optofluidics: fundamentals, devices, and applications. McGraw-Hill, New YorkGoogle Scholar
  19. Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5:591–597CrossRefGoogle Scholar
  20. Faulds K, Smith WE, Graham D (2004) Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal Chem 76:412–417CrossRefGoogle Scholar
  21. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  22. Fu C-C, Ossato G, Long M et al (2010) Bimetallic nanopetals for thousand-fold fluorescence enhancements. Appl Phys Lett 97:203101CrossRefGoogle Scholar
  23. Gorodetsky ML, Ilchenko VS (1999) Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J Opt Soc Am B 16:147–154CrossRefGoogle Scholar
  24. Grimes A, Breslauer DN, Long M et al (2008) Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. Lab Chip 8:170–172CrossRefGoogle Scholar
  25. Grubisha DS, Lipert RJ, Park H-Y et al (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943CrossRefGoogle Scholar
  26. Guo Y, Li H, Reddy K et al (2011) Optofluidic Fabry–Perot cavity biosensor with integrated flow-through micro-/nanochannels. Appl Phys Lett 98:041104CrossRefGoogle Scholar
  27. Guo Y, Khaing Oo MK, Reddy K, Fan X (2012) Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries. ACS Nano 6:381–388CrossRefGoogle Scholar
  28. Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394:1719–1727CrossRefGoogle Scholar
  29. Han B, Choi N, Kim KH et al (2011) Application of silver-coated magnetic microspheres to a SERS-based optofluidic sensor. J Physical Chemistry C 115:6290–6296CrossRefGoogle Scholar
  30. Hawkins AR, Schmidt H (2010) Handbook of Optofluidics. CRC Press, Boca RatonCrossRefGoogle Scholar
  31. Hossein-Zadeh M, Vahala KJ (2007) Free ultra-high-Q microtoroid: a tool for designing photonic devices. Opt Express 15:166–175CrossRefGoogle Scholar
  32. Huh YS, Erickson D (2010) Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays. Biosens Bioelectron 25:1240–1243CrossRefGoogle Scholar
  33. Huh YS, Chung AJ, Cordovez B, Erickson D (2009a) Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9:433–439CrossRefGoogle Scholar
  34. Huh YS, Chung AJ, Erickson D (2009b) Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid Nanofluid 6:285–297CrossRefGoogle Scholar
  35. Hwang H, Han D, Oh Y-J et al (2011) In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Lab Chip 11:2518–2525CrossRefGoogle Scholar
  36. Isola NR, Stokes DL, Vo-Dinh T (1998) Surface-enhanced Raman gene probe for HIV detection. Anal Chem 70:1352–1356CrossRefGoogle Scholar
  37. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  38. Khaing Oo MK, Han Y, Martini R, Sukhishvili S, Du H (2009) Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt Lett 34:968–970CrossRefGoogle Scholar
  39. Khaing Oo MK, Han Y, Kanka J et al (2010) Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. Opt Lett 35:466–468CrossRefGoogle Scholar
  40. Khan MS, Fon D, Li X et al (2010) Biosurface engineering through ink jet printing. Colloids Surf B 75:441–447CrossRefGoogle Scholar
  41. Kim S, Zhang W, Cunningham BT (2008) Photonic crystals with SiO2–Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy. Appl Phys Lett 93:143112CrossRefGoogle Scholar
  42. Kim S, Zhang W, Cunningham BT (2010) Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy. Opt Express 18:4300–4309CrossRefGoogle Scholar
  43. Kneipp K, Wang Y, Kneipp H et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  44. Kneipp K, Kneipp H, Kartha V et al (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57:R6281–R6284CrossRefGoogle Scholar
  45. Kneipp K, Kneipp H, Itzkan I et al (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976CrossRefGoogle Scholar
  46. Kühn S, Measor P, Lunt EJ et al (2009) Loss-based optical trap for on-chip particle analysis. Lab Chip 9:2212–2216CrossRefGoogle Scholar
  47. Kühn S, Phillips BS, Lunt EJ et al (2010) Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. Lab Chip 10:189–194CrossRefGoogle Scholar
  48. Lee SJ, Moskovits M (2011) Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett 11:145–150CrossRefGoogle Scholar
  49. Lee S, Choi J, Chen L et al (2007) Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal Chim Acta 590:139–144CrossRefGoogle Scholar
  50. Lee CH, Hankus ME, Tian L et al (2011) Highly sensitive SERS substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83:8953–8958CrossRefGoogle Scholar
  51. Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B 76:564–570CrossRefGoogle Scholar
  52. Lin S, Schonbrun E, Crozier K (2010) Optical manipulation with planar silicon microring resonators. Nano Lett 10:2408–2411CrossRefGoogle Scholar
  53. Liu J, White IM, DeVoe DL (2011) Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering. Anal Chem 83:2119–2124CrossRefGoogle Scholar
  54. Lowe AJ, Huh YS, Strickland AD et al (2010) Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy. Anal Chem 82:5810–5814CrossRefGoogle Scholar
  55. Mahajan S, Richardson J, Brown T, Bartlett PN (2008) SERS-melting: a new method for discriminating mutations in DNA sequences. J Am Chem Soc 130:15589–15601CrossRefGoogle Scholar
  56. Mandal S, Erickson D (2008) Nanoscale optofluidic sensor arrays. Opt Express 16:1623–1631CrossRefGoogle Scholar
  57. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRefGoogle Scholar
  58. Measor P, Seballos L, Yin D et al (2007) On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl Phys Lett 90:211107CrossRefGoogle Scholar
  59. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939CrossRefGoogle Scholar
  60. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114CrossRefGoogle Scholar
  61. Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:4159–4161CrossRefGoogle Scholar
  62. Moskovits M (1985) Surface enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  63. Nie S, Emory S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  64. Park T, Lee S, Seong GH et al (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442CrossRefGoogle Scholar
  65. Park S-M, Huh YS, Craighead HG, Erickson D (2009) A method for nanofluidic device prototyping using elastomeric collapse. Proc Nat Acad Sci 106:15549–15554CrossRefGoogle Scholar
  66. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28:925–942CrossRefGoogle Scholar
  67. Piorek BD, Lee SJ, Santiago JG et al (2007) Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. Proc Nat Acad Sci 104:18898–18901CrossRefGoogle Scholar
  68. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  69. Qu L-L, Li D-W, Xue J-Q et al (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12:876–881CrossRefGoogle Scholar
  70. Quang LX, Lim C, Seong GH et al (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8:2214–2219CrossRefGoogle Scholar
  71. Schmidt H, Hawkins AR (2011) The photonic integration of non-solid media using optofluidics. Nat Photonics 5:598–604CrossRefGoogle Scholar
  72. Stacy AA, Van Duyne RP (1983) Surface enhanced Raman and resonance Raman spectroscopy in a non-aqueous electrochemical environment: Tris(2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitrile. Chem Phys Lett 102:365–370CrossRefGoogle Scholar
  73. Strehle KR, Cialla D, Rösch P et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79:1542–1547CrossRefGoogle Scholar
  74. Sun Y, Shopova SI, Wu C-S et al (2010) Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc Nat Acad Sci 107:16039–16042CrossRefGoogle Scholar
  75. Tong L, Righini M, Gonzalez MU et al (2009) Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip 9:193–195CrossRefGoogle Scholar
  76. Vo-Dinh T (2008) Nanobiosensing using plasmonic nanoprobes. IEEE J Sel Top Quantum Electron 14:198–205CrossRefGoogle Scholar
  77. Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596CrossRefGoogle Scholar
  78. Wabuyele MB, Vo-Dinh T (2005) Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal Chem 77:7810–7815CrossRefGoogle Scholar
  79. Walter A, März A, Schumacher W et al (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11:1013–1021CrossRefGoogle Scholar
  80. Wang M, Jing N, Chou I-H et al (2007) An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 7:630–632CrossRefGoogle Scholar
  81. Wang G, Lim C, Chen L et al (2009a) Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Anal Bioanal Chem 394:1827–1832CrossRefGoogle Scholar
  82. Wang M, Benford M, Jing N et al (2009b) Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy. Microfluid Nanofluid 6:411–417MATHCrossRefGoogle Scholar
  83. White IM, Gohring J, Fan X (2007) SERS-based detection in an optofluidic ring resonator platform. Opt Express 15:17433–17442CrossRefGoogle Scholar
  84. Wilson R, Bowden SA, Parnell J, Cooper JM (2010) Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics. Anal Chem 82:2119–2123CrossRefGoogle Scholar
  85. Yan H, Gu C, Yang C et al (2006) Hollow core photonic crystal fiber surface-enhanced Raman probe. Appl Phys Lett 89:204101CrossRefGoogle Scholar
  86. Yang X, Shi C, Wheeler D et al (2010) High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J Opt Soc Am A 27:977–984CrossRefGoogle Scholar
  87. Yanik AA, Huang M, Artar A et al (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96:021101CrossRefGoogle Scholar
  88. Yazdi SH, White IM (2012) A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. Biomicrofluidics 6:014105CrossRefGoogle Scholar
  89. Yea K-H, Lee S, Kyong JB et al (2005) Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy. Analyst 130:1009–1011CrossRefGoogle Scholar
  90. Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630CrossRefGoogle Scholar
  91. Zhao Y, Zhang X-J, Ye J et al (2011) Metallo-dielectric photonic crystals for reproducible surface-enhanced Raman substrates. ACS Nano 5:3027–3033CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations