Microfluidics and Nanofluidics

, Volume 13, Issue 2, pp 299–308 | Cite as

Performance of an adaptive liquid microlens controlled by a microcoil actuator

  • Thanin SchultheisEmail author
  • Dominik Hoheisel
  • Wenjia Xiao
  • Luca Spani Molella
  • Eduard Reithmeier
  • Lutz Rissing
  • Steffen Hardt
Research Paper


We present an optofluidic system based on electromagnetic manipulation of a ferrofluid to tune a liquid lens. Both studies of the dynamics of fluid transport and of the optical properties of the liquid lens have been carried out. Thermal and magnetic field simulations of the microcoil actuators are presented. Proof-of-principle experiments demonstrating the adaption of the focal length of the lens have been carried out. It is shown that the lens adaption proceeds in a reversible and reproducible manner, given that the ferrofluid plug moves with a speed below a specific threshold value. Furthermore, the time delay between the actuation and the deflection of the lens surface is studied.


Ferrofluid Microoptics Liquid lens Microactuator Optofluidics Microfluidics Microchannel Optical liquid Microcoil 



This research work is funded by the German Research Foundation (DFG). Under grants are the projects FA 887/1-1, GA 481/35-1 and HA 2696/17-1, which are part of the Special Priority Program (SPP) 1337 “Active Micro Optics”.


  1. Chen J, Wang W, Fang J, Varahramyan K (2004) Variable-focusing Microlens with Microfluidic Chip. J Micromech Microeng 14:675–680CrossRefGoogle Scholar
  2. Chen J, Hoheisel D, Rissing L (2011) Sputtering SmCo thin films and integration into a ferrofluidic microactuator. IEEE Trans Magn 47(10):4473–4476CrossRefGoogle Scholar
  3. Cheng H, Xu S, Liu Y, Levi S, Wu S (2011) Adaptive mechanical-wetting lens actuated by ferrofluids. Optics Commun 284:2118–2121CrossRefGoogle Scholar
  4. Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nat Photon 442:551–513Google Scholar
  5. de Gennes PG, Brochard-Wyart F, Quéré D (2002) Capillarity and wetting phenomena-drops, bubbles, pearls, waves. Springer, New YorkGoogle Scholar
  6. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40Google Scholar
  7. Goodman JW (2005) Introduction to Fourier optics. Roberts & Company, Lake CharlesGoogle Scholar
  8. Hoffman RL (1975) A study of the advancing interfaces. I. Interface shape in liquid-gas system. J Colloid Interface Sci 50:228–241Google Scholar
  9. Hoheisel D, Leng C, Rissing L, Gatzen HH (2010) Design, modeling and fabrication sequence of a ferrofluidic microactuator. In: Proceedings of the 12th International Conference on new actuators, pp 361–364Google Scholar
  10. Hoheisel D, Rissing L (2011) Characterization of a stator system for a ferrofluidic microactuator and design optimization. In: Proceedings of Smart System Integration 2011, ISBN 978-3-8007-3324-8Google Scholar
  11. Hoheisel D, Schultheis T, Spani Molella L, Reithmeier E, Rissing L (2011) Einsatz elektromagnetischer Antriebe in fluidischen Systemen. Proceedings of Kolloquium Mikroproduktion und Abschlusskolloquium SFB 499:105–110Google Scholar
  12. Krupenkin T, Yang S, Mach P (2003) Tunable liquid microlens. Appl phys Lett 82:316–318CrossRefGoogle Scholar
  13. Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl phys Lett 85:1128–1130CrossRefGoogle Scholar
  14. López CA, Hirsa AH (2008) Fast focusing using a pinned-contact oscillating liquid lens. Nat Photon 2:610–613CrossRefGoogle Scholar
  15. Maillard M, Legrand J, Berge B (2009) Two liquids wetting and low hysteresis electrowetting on dielectric applications. Langmuir, New YorkGoogle Scholar
  16. Oertel jr. H, Böhle M, Dohrmann U (2009) Strömungsmechanik. 5th edn. Vieweg und Teubner, BerlinGoogle Scholar
  17. Oku H, Ishikawa M (2009) A rapidly deformable liquid lens. SPIE Opt Des Eng. doi: 10.1117/2.1200912.002505
  18. Ren H, Wu ST (2005) Variable-focus lens by changing aperture. Appl. Phys. Lett. 86:1–3Google Scholar
  19. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  20. Saurei L, Peseux J, Laune F, Berge B (2004) Tunable liquid lens based on electrowetting technology: principle, properties and applications. In: MicroOptics Conference, JenaGoogle Scholar
  21. Schröder G (1990) Technische optik, VogelGoogle Scholar
  22. Schultheis T, Fahlbusch T, Rahlves M, Spani Molella L, Reithmeier E (2008) Brennweitenvariation fluidischer Mikrooptiken. In: Zweiter Workshop Optische Technologien, pp 158–160Google Scholar
  23. Shah RK, London AL (1978) Laminar flow forced convection in ducts. Academic Press, LondonGoogle Scholar
  24. Werber A (2007) Pneumatic microoptics. Dissertation, Der Andere VerlagGoogle Scholar
  25. White FM (1995) Fluid mechanics. 3rd edn. McGraw Hill, New YorkGoogle Scholar
  26. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  27. Worgull M (2008) Hot embossing: theory and technology of microreplication. Elsevier Science, AmsterdamGoogle Scholar
  28. Xiao W, Hardt S (2010) An adaptive liquid microlens driven by a ferrofluidic transducer. J Micromech Microeng 20(055032)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thanin Schultheis
    • 1
    Email author
  • Dominik Hoheisel
    • 2
  • Wenjia Xiao
    • 3
  • Luca Spani Molella
    • 1
  • Eduard Reithmeier
    • 1
  • Lutz Rissing
    • 2
  • Steffen Hardt
    • 3
  1. 1.Hanover Center of Optical Technologies and Institute of Measurement and Automatic ControlLeibniz Universitaet HannoverHanoverGermany
  2. 2.Institute for Micro Production TechnologyLeibniz Universitaet HannoverGarbsenGermany
  3. 3.Center of Smart InterfacesTU DarmstadtDarmstadtGermany

Personalised recommendations