Advertisement

Microfluidics and Nanofluidics

, Volume 12, Issue 5, pp 677–686 | Cite as

Novel ferrofluids coated with a renewable material obtained from cashew nut shell liquid

  • A. C. H. Barreto
  • F. J. N. Maia
  • V. R. Santiago
  • V. G. P. Ribeiro
  • J. C. Denardin
  • Giuseppe Mele
  • L. Carbone
  • Diego Lomonaco
  • S. E. Mazzetto
  • P. B. A. Fechine
Research Paper

Abstract

In this work, we present the synthesis and characterization of a new surfactant molecule obtained from a byproduct of the cashew nut processing (diphosphorylated cardol, DPC). It is herein used to overcoat magnetic nanoparticles showing spinel structures in order to create new ferrofluids. The nanoparticle structure and magnetic properties have been deeply investigated. DPC-functionalized Fe3O4 and NiFe2O4 samples exhibit higher magnetic saturation than DPC–CoFe2O4. These new ferrofluids reveal appealing as possible nanoparticle stabilizing molecules, magnetic resonance imaging agents, storage systems or in any material science field that requires the employment of biocompatible magnetic stable fluids.

Keywords

Ferrofluids Magnetic nanoparticles Cardol Phosphorylated compounds 

Notes

Acknowledgments

This work was supported by CAPES, Funcap and CNPq (Brazilian agencies). The support from Fondecyt 1110252, Millennium Science Nucleus, Basic and Applied Magnetism Grant No. P10-061-F and CONICYT BASAL CEDENNA FB0807, is gratefully acknowledged. The authors thank CENAUREM (Centro Nordestino de Aplicação e Uso da Ressonância Magnética Nuclear) for the NMR analyses.

References

  1. Albuquerque AS, Ardisson JD, Macedo WAA, López JL, Paniago R, Persiano AIC (2001) Structure and magnetic properties of nanostructure Ni-ferrite. J Magn Magn Mater 226–230:1379–1381CrossRefGoogle Scholar
  2. Ayyappan S, Philip J, Raj B (2009) A facile method to control the size and magnetic properties of CoFe2O4 nanoparticles. Mater Chem Phy 115:712–717CrossRefGoogle Scholar
  3. Barreto ACH, Santiago VR, Mazzetto SE, Denardin JC, Lavín R, Mele G, Ribeiro MENP, Vieira IGP, Gonçalves T, Ricardo NMPS, Fechine PBA (2011) Magnetic nanoparticles for a new drug delivery system to control quercetin for cancer chemotherapy. J Nanopart Res. doi: 10.1007/s11051-011-0559-9
  4. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23–30CrossRefGoogle Scholar
  5. Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Shinoda K, Jeyadevan B, Tohji K, Nakatsuka K, Furubayashi T, Nakatani I (2001) Mixed spinel structure in nanocrystalline NiFe2O4. Phys Rev B 63:184108–184114CrossRefGoogle Scholar
  6. Chitu L, Jergel M, Majkova E, Luby S, Capek I, Satka A (2007) Structure and magnetic properties of CoFe2O4 and Fe3O4 nanoparticles. Mater Sci Eng C 27:1415–1417CrossRefGoogle Scholar
  7. Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2003) Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib 210:307–317CrossRefGoogle Scholar
  8. Durmus Z, Erdemi H, Aslan A, Toprak MS, Sozeri H, Baykal A (2011) Synthesis and characterization of poly(vinyl phosphonic acid) (PVPA)–Fe3O4 nanocomposite. Polyhedron 30:419–426CrossRefGoogle Scholar
  9. Façanha MAR, Mazzetto SE, Carioca JOB, de Barros GG (2007) Evaluation of antioxidant properties of a phosphorated cardanol compound on mineral oils (NH10 and NH20). Fuel 86:2416–2421CrossRefGoogle Scholar
  10. Gyergyek S, Makovec D, Drofenik M (2011) Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents. J Colloid Interface Sci 354:498–505CrossRefGoogle Scholar
  11. Hrdina A, Lai E, Li C, Sadi B, Kramer G (2010) A comparative study of magnetic transferability of superparamagnetic nanoparticles. J Magn Magn Mater 322:2622–2627CrossRefGoogle Scholar
  12. Hu FX, Neoh KG, Kang ET (2006) Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 27:5725–5733CrossRefGoogle Scholar
  13. Kim YI, Kim D, Lee CS (2003) Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys B 337:42–51CrossRefGoogle Scholar
  14. Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330CrossRefGoogle Scholar
  15. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B 80:184–192CrossRefGoogle Scholar
  16. Laokul P, Amornkitbamrung V, Seraphin S, Maensiri S (2011) Characterization and magnetic properties of nanocrystalline CuFe2O4, Ni Fe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr Appl Phys 11:101–108CrossRefGoogle Scholar
  17. Li G, Jiang Y, Huang K, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Comp 466:451–456CrossRefGoogle Scholar
  18. Maia FJN, Ribeiro VG, Clemente CSC, Lomonaco, D, Vasconcelos PHM, Mazzetto SE (2011) Thermo-oxidative evaluation of new cardol derivatives as antioxidants for mineral oils. J Therm Anal Calorim. doi: 10.1007/s10973-011-1870-5
  19. Lomonaco D, Cangane FY, Mazzetto SE (2011) Thiophosphate esters of cashew nutshell liquid derivatives as new antioxidants for poly(methyl methacrylate). J Therm Anal Calorim 104:1177–1183CrossRefGoogle Scholar
  20. Lopes AAS, Carneiro EA, Rios MAS, Hiluy Filho JJ, Carioca JOB, Barros GG, Mazzetto SE (2008) Study of antioxidant property of a thiosphorated compound derived from cashew nut shell liquid in hydrogenated naphthenics oils. Braz J Chem Eng 25:119–127CrossRefGoogle Scholar
  21. Maia AOG, Meneses CT, Menezes AS, Flores WH, Melo DMA, Sasaki JM (2006) Synthesis and X-ray structural characterization of NiO nanoparticles obtained through gelatin. J Non-Cryst Sol 352:3729–3733CrossRefGoogle Scholar
  22. Mazzetto SE, Lomonaco D, Mele G (2009) Cashew nut oil: opportunities and challenges in the context of sustainable industrial development. Quim Nova 32:732–741CrossRefGoogle Scholar
  23. Meerod S, Tumcharem G, Wichai U, Rutnakorpituk M (2008) Magnetite nanoparticles stabilized with polymeric bilayer of poly(ethylene glycol) methyl ether-poly(-caprolactone) copolymers. Polymer 49:3950–3956CrossRefGoogle Scholar
  24. Mele G, Vasapollo G (2008) Fine chemicals and new hybrids materials from cardanol. Mini Rev Org Chem 5:243–253CrossRefGoogle Scholar
  25. Paramashivappa R, Phani Kumar P, Vithayathil PJ, Srinivasa Rao A (2001) Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 49:2548–2551CrossRefGoogle Scholar
  26. Passamani EC, Segatto BR, Larica C, Cohen R, Greneche JM (2010) Magnetic hysteresis loop shift in NiFe2O4 nanocrystalline powder with large grain boundary fraction. J Magn Magn Mater 322:3917–3925CrossRefGoogle Scholar
  27. Patel RN, Bandyopadhyay S, Ganesh A (2006) Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide. Biores Technol 97:847–853CrossRefGoogle Scholar
  28. Philip JY, Buchweishaija J, Mkayula LL, Ye L (2007) Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid. J Agric Food Chem 55:8870–8876CrossRefGoogle Scholar
  29. Rao BP, Rao GSN, Kumar AM, Rao KH, Murthy YLN, Hong SM, Kim CO, Kim C (2007) Soft chemical synthesis and characterization of Ni0.65Zn0.35Fe2O4 nanoparticles. J Appl Phys 101:123902-1–123902-4Google Scholar
  30. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22:151–152CrossRefGoogle Scholar
  31. Rios MAS, Nascimento TL, Santiago SN, Mazzetto SE (2009) Cashew nut shell liquid: a versatile raw material utilized for syntheses of phosphorus compounds. Energy Fuels 23:5432–5437CrossRefGoogle Scholar
  32. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17:7907–7911CrossRefGoogle Scholar
  33. Setianto WB, Yoshikawa S, Smith RL Jr, Inomatab H, Florussed LJ, Peterse CJ (2009) Pressure profile separation of phenolic liquid compounds from cashew (Anacardium occidentale) shell with supercritical carbon dioxide and aspects of its phase equilibria. J Supercrit Fluid 48:203–210CrossRefGoogle Scholar
  34. Shen L, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453CrossRefGoogle Scholar
  35. Shi Y, Ding J, Liu X, Wang J (1999) NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying. J Magn Magn Mater 205:249–254CrossRefGoogle Scholar
  36. Slavov L, Abrashev MV, Merodiiska T, Gelev Ch, Vandenberghe RE, Deneva IM, Nedkov I (2010) Raman spectroscopy investigation of magnetic nanoparticles in ferrofluids. J Magn Magn Mater 322:1904–1911CrossRefGoogle Scholar
  37. Trevisan MT, Pfundstein B, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44:188–197CrossRefGoogle Scholar
  38. Valenzuela R, Fuentes MC, Parra C, Baeza J, Duran N, Sharma SK, Knobel M, Freer J (2009) Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. J Alloy Comp 488:227–231CrossRefGoogle Scholar
  39. Waje SB, Hashim M, Yusoff WDW, Abbas Z (2010) X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. App Surf Sci 256:3122–3127CrossRefGoogle Scholar
  40. Wang Z, Shen B, Aihua Z, He N (2003) Synthesis of Pd/Fe3O4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chem Eng J 113:27–34CrossRefGoogle Scholar
  41. Xu Z, Shen C, Hou Y (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Matter 21:1778–1780CrossRefGoogle Scholar
  42. Young RA, Sakthivel A, Moss TS, Santos COP (1995) DBWS-9411 - an upgrade of the DBWS programs for Rietveld refinement with PC and mainframe computers. J Appl Cryst 28:366–367CrossRefGoogle Scholar
  43. Zhao DL, Zeng XW, Xia QS, Tang JT (2009) Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia. J Alloy Comp 469:215–218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. C. H. Barreto
    • 1
    • 2
  • F. J. N. Maia
    • 2
  • V. R. Santiago
    • 1
    • 2
  • V. G. P. Ribeiro
    • 2
  • J. C. Denardin
    • 3
  • Giuseppe Mele
    • 4
  • L. Carbone
    • 5
  • Diego Lomonaco
    • 2
  • S. E. Mazzetto
    • 2
  • P. B. A. Fechine
    • 1
  1. 1.Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará, UFCFortalezaBrazil
  2. 2.Laboratório de Produtos e Tecnologia em Processos, LPTUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de FísicaUniversidad de Santiago de Chile, USACHSantiagoChile
  4. 4.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  5. 5.Istituto Nanoscienze UOS Lecce, NNLLecceItaly

Personalised recommendations