Advertisement

Microfluidics and Nanofluidics

, Volume 12, Issue 1–4, pp 1–16 | Cite as

Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale

  • Nam-Trung Nguyen
Review Paper

Abstract

Micro-magnetofluidics refers to the science and technology that combines magnetism with microfluidics to gain new functionalities. Magnetism has been used for actuation, manipulation and detection in microfluidics. In turn, microfluidic phenomena can be used for making tunable magnetic devices. This paper presents a systematic review on the interactions between magnetism and fluid flow on the microscale. The review rather focuses on physical and engineering aspects of micro-magnetofluidics, than on the biological applications which have been addressed in a number of previous excellent reviews. The field of micro-magnetofluidics can be categorized according to the type of the working fluids and the associated microscale phenomena of established research fields such as magnetohydrodynamics, ferrohydrodynamics, magnetorheology and magnetophoresis. Furthermore, similar to microfluidics the field can also be categorized as continuous and digital micro-magnetofluidics. Starting with the analysis of possible magnetic forces in microscale and the impact of miniaturization on these forces, the paper revisits the use of magnetism for controlling fluidic functions such as pumping, mixing, magnetowetting as well as magnetic manipulation of particles. Based on the observations made with the state of the art of the field micro-magnetofluidics, the paper presents some perspectives on the possible future development of this field. While the use of magnetism in microfluidics is relatively established, possible new phenomena and applications can be explored by utilizing flow of magnetic and electrically conducting fluids.

Keywords

Micro-magnetofluidics Magnetism Microfluidics Magnetic bead Ferro fluid 

References

  1. Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA 105(47):18165–18170Google Scholar
  2. Afshar R, Moser Y, Lehnert T, Gijs MAM (2011) Three-dimensional magnetic focusing of superparamagnetic beads for on-chip agglutination assays. Anal Chem 83(3):1022–1029CrossRefGoogle Scholar
  3. Ahn JJ, Oh J, Choi B (2004) A novel type of a microfluidic system using ferrofluids for an application of μ-tas. Microsyst Technol 10(8-9):622–627CrossRefGoogle Scholar
  4. Ando B, Ascia A, Baglio S, Beninato A (2009a) The “one drop” ferrofluidic pump with analog control. Sens Actuators A Phys 156(1):251–256CrossRefGoogle Scholar
  5. Ando B, Ascia A, Baglio S, Pitrone N (2009b) Ferrofluidic pumps: a valuable implementation without moving parts. IEEE Trans Instrum Meas 58(9):3232–3237CrossRefGoogle Scholar
  6. Aussillous P, Quéré D (2001) Liquid marbles. Nature 411(6840):924–927CrossRefGoogle Scholar
  7. Berim GO, Ruckenstein E (2011) Nanodrop of an ising magnetic fluid on a solid surface. Langmuir 27(14):8753–8760CrossRefGoogle Scholar
  8. Beyzavi A, Nguyen NT (2009) One-dimensional actuation of a ferrofluid droplet by planar microcoils. J Phys D Appl Phys 42(1):015004Google Scholar
  9. Beyzavi A, Nguyen NT (2010) Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. J Micromech Microeng 20(1):015018Google Scholar
  10. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122Google Scholar
  11. Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J (2008) Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo. J Am Chem Soc 130(26):8164–8165CrossRefGoogle Scholar
  12. Chen C, Cheng Z (2008) An experimental study on Rosensweig instability of a ferrofluid droplet. Phys Fluids 20(5)Google Scholar
  13. Chen CY, Wu SY, Miranda JA (2007) Fingering patterns in the lifting flow of a confined miscible ferrofluid. Phys Rev E Stat Nonlinear Soft Matter Phys 75(3):036310Google Scholar
  14. Chen CY, Chen C, Lee WH (2009) Experiments on breakups of a magnetic fluid drop through a micro-orifice. J Magnet Magnet Mater 321(20):3520–3525CrossRefGoogle Scholar
  15. Choi JW, Liakopoulos TM, Ahn CH (2001) An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy. Biosens Bioelectron 16(6):409–416CrossRefGoogle Scholar
  16. Cowley MD, Rosensweig RE (1967) The interfacial instability of magnetic fluid. J Fluid Mech 30:671–688Google Scholar
  17. Davidson PA (2011) An introduction to magnetohydrodynamics. Cambridge University PressGoogle Scholar
  18. Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phys Lett 78(12):1775–1777CrossRefGoogle Scholar
  19. Derec C, Wilhelm C, Servais J, Bacri J (2010) Local control of magnetic objects in microfluidic channels. Microfluid Nanofluid 8(1):123–130CrossRefGoogle Scholar
  20. Doyle PS, Bibette J, Bancaud A, Viovy J (2002) Self-assembled magnetic matrices for dna separation chips. Science 295(5563):2237CrossRefGoogle Scholar
  21. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865CrossRefGoogle Scholar
  22. Eijkel JCT, Dalton C, Hayden CJ, Burt JPH, Manz A (2003) A circular AC magnetohydrodynamic micropump for chromatographic applications. Sens Actuators B Chem 92(1–2):215–221CrossRefGoogle Scholar
  23. Fischer P, Ghosh A (2011) Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3(2):557–563CrossRefGoogle Scholar
  24. Friedman G, Yellen B (2005) Magnetic separation, manipulation and assembly of solid phase in fluids. Curr Opin Colloid Interface Sci 10(3–4):158–166CrossRefGoogle Scholar
  25. Ganguly R, Puri IK (2010) Microfluidic transport in magnetic mems and biomems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):382–399CrossRefGoogle Scholar
  26. Garstecki P, Tierno P, Weibel DB, Sagus F, Whitesides GM (2009) Propulsion of flexible polymer structures in a rotating magnetic field. J Phys Condens Matter 21(20)Google Scholar
  27. Ghost A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245CrossRefGoogle Scholar
  28. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40Google Scholar
  29. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563CrossRefGoogle Scholar
  30. Han K, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab on a Chip Miniaturisation Chem Biol 6(2):265–273CrossRefGoogle Scholar
  31. Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B Chem 99(2–3):592–600Google Scholar
  32. Hatch A, Kamholz AE, Holman G, Yager P, Bhringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10(2):215–221CrossRefGoogle Scholar
  33. Homsy A, Linder V, Lucklum F, de Rooij NF (2007) Magnetohydrodynamic pumping in nuclear magnetic resonance environments. Sens Actuators B Chem 123(1):636–646CrossRefGoogle Scholar
  34. Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens Actuators A Phys 80(1):84–89CrossRefGoogle Scholar
  35. Joung J, Shen J, Grodzinski P (2000) Micropumps based on alternating high-gradient magnetic fields. IEEE Trans Magnet 36(4 PART 2):2012–2014CrossRefGoogle Scholar
  36. Jung Y, Choi Y, Han K, Frazier AB (2010) Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed Microdevices 12(4):637–645CrossRefGoogle Scholar
  37. Kang H, Choi B (2011) Development of the MHD micropump with mixing function. Sens Actuators A Phys 165(2):439–445CrossRefGoogle Scholar
  38. Kang JH, Park J (2007) Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. Small 3(10):1784–1791CrossRefGoogle Scholar
  39. Kang JH, Choi S, Lee W, Park J (2008) Isomagnetophoresis to discriminate subtle difference in magnetic susceptibility. J Am Chem Soc 130(2):396–397CrossRefGoogle Scholar
  40. Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angewandte Chemie Int Ed 44(5):744–746CrossRefGoogle Scholar
  41. Kong TF, Huan Shin EHS, Sugiarto HS, Liew HF, Wang X, Lew WS, Nguyen NT, Chen Y (2011) An efficient microfluidic sorter: implementation of double meandering micro striplines for magnetic particles switching. Microfluid Nanofluid 10(5):1069–1078CrossRefGoogle Scholar
  42. Krishnan JN, Kim C, Park HJ, Kang JY, Kim TS, Kim SK (2009) Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Electrophoresis 30(9):1457–1463CrossRefGoogle Scholar
  43. Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85(6):1063–1065CrossRefGoogle Scholar
  44. Lemoff AV, Lee AP (2000) Ac magnetohydrodynamic micropump. Sens Actuators B Chem 63(3):178–185CrossRefGoogle Scholar
  45. Lemoff AV, Lee AP (2003) An AC magnetohydrodynamic microfluidic switch for micro total analysis systems. Biomed Microdevices 5(1):55–60CrossRefGoogle Scholar
  46. Leventis N, Gao X (2001) Magnetohydrodynamic electrochemistry in the field of nd-fe-b magnets. theory, experiment, and application in self-powered flow delivery systems. Anal Chem 73(16):3981–3992CrossRefGoogle Scholar
  47. Li Q, Lian W, Sun H, Xuan Y (2008) Investigation on operational characteristics of a miniature automatic cooling device. Int J Heat Mass Transf 51(21–22):5033–5039CrossRefzbMATHGoogle Scholar
  48. Lian W, Xuan Y, Li Q (2009) Design method of automatic energy transport devices based on the thermomagnetic effect of magnetic fluids. Int J Heat Mass Transf 52(23–24):5451–5458CrossRefzbMATHGoogle Scholar
  49. Liu J, Lawrence EM, Wu A, Ivey ML, Flores GA, Javier K, Bibette J, Richard J (1995) Field-induced structures in ferrofluid emulsions. Phys Rev Lett 74(14):2828–2831CrossRefGoogle Scholar
  50. Liu J, Yap YF, Ng MY, Nguyen NT (2011) Numerical study of the formation process of ferrofluid droplets. Physics of Fluids 23(7):072008Google Scholar
  51. Liu J, Tan SH, Yap YF, Ng MY, Nguyen NT (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11(2):177–187CrossRefGoogle Scholar
  52. Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ (2004) A magnetocaloric pump for microfluidic applications. IEEE Trans Nanobiosci 3(2):101–110CrossRefGoogle Scholar
  53. Mao L, Koser H (2006) Towards ferrofluidics for μ-tas and lab on-a-chip applications. Nanotechnology 17(4):S34–S47CrossRefGoogle Scholar
  54. Mao L, Elborai S, He X, amd Zahn M, Koser H (2011) Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Phys Rev B 84(10):104431Google Scholar
  55. Murshed SMS, Tan SH, Nguyen NT, abd Wong TN, Yobas L (2009) Microdroplet formation of water and nanofluids in heat-induced microfluidic t-junction. Micro Nanosyst 6(6):253–259Google Scholar
  56. Nguyen NT, Chai MF (2009) A stepper micropump for ferrofluid driven microfluidic systems. Micro Nanosyst 1(1):17–21CrossRefGoogle Scholar
  57. Nguyen B, Kassegne SK (2008) High-current density DC magenetohydrodynamics micropump with bubble isolation and release system. Microfluid Nanofluid 5(3):383–393CrossRefGoogle Scholar
  58. Nguyen NT, Ng KM, Huang X (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5): 052509Google Scholar
  59. Nguyen NT, Ting TH, Yap YF, Wong TN, Chai JC, Ong WL, Zhou J, Tan SH, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91(8)Google Scholar
  60. Nguyen NT, Zhu GP, Chua Y, Phan VN, Tan SH (2010) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559Google Scholar
  61. Niu X, Zhang M, Wu J, Wen W, Sheng P (2009) Generation and manipulation of “smart” droplets. Soft Matter 5(3):576–581CrossRefGoogle Scholar
  62. Pal S, Datta A, Sen S, Mukhopdhyay A, Bandopadhyay K, Ganguly R (2011) Characterization of a ferrofluid-based thermomagnetic pump for microfluidic applications. J Magnet Magnet Mater (article in press)Google Scholar
  63. Pamme N (2006) Magnetism and microfluidics. Lab on a Chip Miniaturisation Chem Biol 6(1):24–38CrossRefGoogle Scholar
  64. Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256CrossRefGoogle Scholar
  65. Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: separation and detection of mixtures of magnetic particles in continuous flow. J Magnet Magnet Mater 307(2):237–244CrossRefGoogle Scholar
  66. Plouffe BD, Lewis LH, Murthy SK (2011) Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 5(1):013413Google Scholar
  67. Probst R, Lin J, Komaee A, Nacev A, Cummins Z, Shapiro B (2011) Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance. J Magnet Magnet Mater 323(7)Google Scholar
  68. Qian SZ, Bau HH (2009) Magneto-hydrodynamics based microfluidics. Mech Res Commun 36(1):382–399Google Scholar
  69. Rhodes S, Perez J, Elborai S, Lee S, Zahn M (2005) Ferrofluid spiral formations and continuous-to-discrete phase transitions under simultaneously applied DC axial and AC in-plane rotating magnetic fields. J Magnet Magnet Mater 289:353–355CrossRefGoogle Scholar
  70. Rong R, Choi JW, Ahn CH (2006) An on-chip magnetic bead separator for biocell sorting. J Micromech Microeng 16(12):2783–2790CrossRefGoogle Scholar
  71. Rosensweig RE (1997) Ferrohydrodynamics. Dover PublicationsGoogle Scholar
  72. Siegel AC, Shevkoplyas SS, Weibel DB, Bruzewicz DA, Martinez AW, Whitesides GM (2006) Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane). Angewandte Chemie Int Ed 45(41):6877–6882CrossRefGoogle Scholar
  73. Siegel AC, Bruzewicz DA, Weibel DB, Whitesides GM (2007) Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane). Adv Mater 19(5):727–733CrossRefGoogle Scholar
  74. Smistrup K, Kjeldsen BG, Reimers JL, Dufva M, Petersen J, Hansen MF (2005) On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator. Lab on a Chip Miniaturisation Chem Biol 5(11):1315–1319CrossRefGoogle Scholar
  75. Song SH, Lee HL, Min YH, Jung HI (2009) Electromagnetic microfluidic cell labeling device using on-chip microelectromagnet and multi-layered channels. Sens Actuators B Chem 141(1):210–216CrossRefGoogle Scholar
  76. Sun Y, Kwok YC, Nguyen NT (2007) A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab on a Chip Miniaturisation Chem Biol 7(8):1012–1017CrossRefGoogle Scholar
  77. Sun Y, Nguyen NT, Yien CK (2008) High-throughput polymerase chain reaction in parallel circular loops using magnetic actuation. Anal Chem 80(15):6127–6130CrossRefGoogle Scholar
  78. Sun Y, Kwok YC, Foo-Peng Lee P, Nguyen NT (2009) Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Anal Bioanal Chem 394(5):1505–1508CrossRefGoogle Scholar
  79. Suwa M, Watarai H (2011) Magnetoanalysis of micro/nanoparticles: a review. Anal Chim Acta 690(2):137–147CrossRefGoogle Scholar
  80. Tan SH, Nguyen NT (2011) Generation and manipulation of monodispersed ferrofluid emulsion: the effect of an uniform magnetic field in flow-focusing and t-junction configurations. Phys Rev E 84(3):036317Google Scholar
  81. Tan SH, Nguyen NT, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic t-junction. J Micromech Microeng 20(4):045004Google Scholar
  82. Tierno P, Golestanian R, Pagonabarraga I, Sagus F (2008a) Magnetically actuated colloidal microswimmers. J Phys Chem B 112(51):16525–16528Google Scholar
  83. Tierno P, Golestanian R, Pagonabarraga I, Sagus F (2008b) Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys Rev Lett 101(21)Google Scholar
  84. Wang L, Zhang M, Li J, Gong X, Wen W (2010) Logic control of microfluidics with smart colloid. Lab Chip Miniaturisation Chem Biol 10(21):2869–2874CrossRefGoogle Scholar
  85. Watarai H, Namba M (2001) Magnetophoretic behavior of single polystyrene particles in aqueous manganese (II) chloride. Anal Sci 17(10):1233–1236CrossRefGoogle Scholar
  86. Weddemann A, Albon C, Auge A, Wittbracht F, Hedwig P, Akemeier D, Rott K, Meiner D, Jutzi P, Hntten A (2010) How to design magneto-based total analysis systems for biomedical applications. Biosens Bioelectron 26(4):1152–1163CrossRefGoogle Scholar
  87. West J, Gleeson JP, Alderman J, Collins JK, Berney H (2003) Structuring laminar flows using annular magnetohydrodynamic actuation. Sens Actuators B Chem 96(1-2):190–199CrossRefGoogle Scholar
  88. Weston MC, Gerner MD, Fritsch I (2010) Magnetic fields for fluid motion. Anal Chem 82(9):3411–3418CrossRefGoogle Scholar
  89. Wirix-Speetjens R, De Boeck J (2004) On-chip magnetic particle transport by alternating magnetic field gradients. IEEE Trans Magnet 40(4 I):1944–1946CrossRefGoogle Scholar
  90. Xuan Y, Lian W (2011) Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl Therm Eng 31(8-9):1487–1494CrossRefGoogle Scholar
  91. Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: A “precise” miniature reactor. Adv Mater 22(43):1–5CrossRefGoogle Scholar
  92. Yamahata C, Chastellain M, Parashar VK, Petri A, Hofmann H, Gijs MAM (2005) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst 14(1):96–102CrossRefGoogle Scholar
  93. Zhang M, Gong X, Wen W (2009) Manipulation of microfluidic droplets by electrorheological fluid. Electrophoresis 30(18):3116–3123CrossRefGoogle Scholar
  94. Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667CrossRefGoogle Scholar
  95. Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710CrossRefGoogle Scholar
  96. Zhong JH, Yi MQ, Bau HH (2002) Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens Actuators A Phys 96(1):59–66CrossRefGoogle Scholar
  97. Zhou Q, Ristenpart WD, Stroeve P (2011) Magnetically induced decrease in droplet contact angle on nanostructured surfaces. Langmuir 27(19):11747–11751Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations