Microfluidics and Nanofluidics

, Volume 12, Issue 1–4, pp 295–305 | Cite as

Numerical study of the microdroplet actuation switching frequency in digital microfluidic biochips

Research Paper


In this article, an electrohydrodynamic approach is used to study the microdroplet actuation in contemporary digital microfluidic biochips. The model is employed to analyze the microdroplet motion, and investigate the effects of the key parameters on the devices performance. The modeling results are compared to the experimental observations, and it is shown that the model provides an accurate representation of digital microfluidic transport. An extensive parametric variation is used to derive the maximum actuation switching frequency for ranges of the microdroplet size, gap spacing between the top and bottom plates and electrode pitch size. As a result, scalability of the devices is investigated, and it is shown that the microdroplet transfer rates change inversely with the system size, and microdroplet average velocity is nearly the same for different system scales. As a result of this study, an adjustable force-based actuation switching frequency implementation is proposed, and it is shown that faster microdroplet motion is obtained by in situ adjusting of the switching frequency. Finally, it has been observed that fastest microdroplet motion, despite similar studies conducted in the literature, is not achieved via actuating the next electrode as soon as the microdroplet touches it. Indeed, the switching frequency spectrum is dependent on the physical and geometrical properties of the system.


Digital microfluidic Microdroplet Electrocapillary Switching frequency 


  1. Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4(4):349–355CrossRefGoogle Scholar
  2. Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21(8):920–925CrossRefGoogle Scholar
  3. Afkhami S, Bussmann M (2008) Height functions for applying contact angles to 2D VOF simulations. Int J Numer Methods Fluids 57(4):453–472CrossRefMATHGoogle Scholar
  4. Ahmadi A, Najjaran H, Holzman JF, Hoorfar M (2009) Two-dimensional flow dynamics in digital microfluidic systems. J Micromech Microeng 19(6):065003Google Scholar
  5. Ahmadi A, Holzman JF, Najjaran H, Hoorfar M (2011) Electrohydrodynamic modeling of microdroplet transient dynamics in electrocapillary-based digital microfluidic devices. Microfluid Nanofluid 10(5):1019–1032CrossRefGoogle Scholar
  6. Arzpeyma A, Bhaseen S, Dolatabadi A, Wood-Adams P (2008) A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting. Colloids Surf A Physicochem Eng Aspects 323(1–3):28–35CrossRefGoogle Scholar
  7. Bahadur V, Garimella SV (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 16(8):1494–1503CrossRefGoogle Scholar
  8. Baird E, Young P, Mohseni K (2007) Electrostatic force calculation for an EWOD-actuated droplet. Microfluid Nanofluid 3(6):635–644CrossRefGoogle Scholar
  9. Bhattacharjee B, Najjaran H (2010) Simulation of droplet position control in digital microfluidic systems. J Dyn Syst Meas Control 132(1):014501-3Google Scholar
  10. Blake T, Coninck JD (2002) The influence of solid liquid interactions on dynamic wetting. Adv Colloid Interface Sci 96(1–3):21–36CrossRefGoogle Scholar
  11. Brassard D, Malic L, Normandin F, Tabrizian M, Veres T (2008) Water-oil core–shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8(8):1342–1349CrossRefGoogle Scholar
  12. Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(8):086101Google Scholar
  13. Bussmann M, Mostaghimi J, Chandra S (1999) On a three-dimensional volume tracking model of droplet impact. Phys Fluids 11:1406–1417CrossRefMATHGoogle Scholar
  14. Chang YH, Lee GB, Huang FC, Chen YY, Lin JL (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8(3):215–225CrossRefGoogle Scholar
  15. Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80CrossRefGoogle Scholar
  16. Cooney CG, Chen CY, Emerling MR, Nadim A, Sterling JD (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid 2(5):435–446CrossRefGoogle Scholar
  17. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible. Microfluid Nanofluid 3(3):245–281CrossRefGoogle Scholar
  18. Fair RB (2010) Scaling fundamentals and applications of digital microfluidic microsystems. Microfluid Based Microsyst 0:285–304Google Scholar
  19. Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pamula VK, Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24(1):10–24CrossRefGoogle Scholar
  20. Fan SK, Hsieh TH, Lin DY (2009) General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab Chip 9(9):1236–1242CrossRefGoogle Scholar
  21. Fouillet Y, Jary D, Chabrol C, Claustre P, Peponnet C (2008) Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid Nanofluid 4(3):159–165CrossRefGoogle Scholar
  22. Gao L, McCarthy TJ (2006) Contact angle hysteresis explained. Langmuir 22(14):6234–6237CrossRefGoogle Scholar
  23. Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82(6):2310–2316CrossRefGoogle Scholar
  24. Jebrail MJ, Wheeler AR (2009) Digital microfluidic method for protein extraction by precipitation. Anal Chem 81(1):330–335CrossRefGoogle Scholar
  25. Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15(6):1184–1187CrossRefGoogle Scholar
  26. Kang KH (2002) How electrostatic fields change contact angle in electrowetting. Langmuir 18(26):10318–10322Google Scholar
  27. Keshavarz-Motamed Z, Kadem L, Dolatabadi A (2010) Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels. Microfluid Nanofluid 8(1):47–56CrossRefGoogle Scholar
  28. Kumari N, Bahadur V, Garimella SV (2008) Electrical actuation of dielectric droplets. J Micromech Microeng 18(8):5018CrossRefGoogle Scholar
  29. Lee J, Moon H, Fowler J, Schoellhammer T, Kim CJ (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A Phys 95(2–3):259–268CrossRefGoogle Scholar
  30. Lomax H, Pulliam TH, Zingg DW (2001) Fundamentals of computational fluid dynamics. Springer, BerlinMATHGoogle Scholar
  31. Luk VN, Wheeler AR (2009) A digital microfluidic approach to proteomic sample processing. Anal Chem 81(11):4524–4530CrossRefGoogle Scholar
  32. Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic loc devices. Lab Chip 10(4):418–431CrossRefGoogle Scholar
  33. Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619CrossRefGoogle Scholar
  34. Moon H, Cho SK, Garrell RL (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92(7):4080–4087CrossRefGoogle Scholar
  35. Moon H, Wheeler AR, Garrell RL, Loo JA, Kim CJ (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6(9):1213–1219CrossRefGoogle Scholar
  36. Nichols KP, Gardeniers HJGE (2007) A digital microfluidic system for the investigation of pre-steady-state enzyme kinetics using rapid quenching with MALDI-TOF mass spectrometry. Anal Chem 79(22):8699–8704CrossRefGoogle Scholar
  37. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726CrossRefGoogle Scholar
  38. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101CrossRefGoogle Scholar
  39. Ren H, Fair RB, Pollack MG, Shaughnessy EJ (2002) Dynamics of electro-wetting droplet transport. Sens Actuators B Chem 87(1):201–206CrossRefGoogle Scholar
  40. SadAbadi H, Packirisamy M, Dolatabadi A, Wuthrich R (2010) Effects of electrode switching sequence on EWOD droplet manipulation: a simulation study. In: Proceedings of the ASME FEDSM-ICNMM, vol 31212, pp 1–6Google Scholar
  41. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091Google Scholar
  42. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315CrossRefGoogle Scholar
  43. Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic biochips. In: Proceedings of the conference on design, automation and test in Europe: Proceedings, European design and automation association, Munich, pp 323–328Google Scholar
  44. Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6(1):96–104CrossRefGoogle Scholar
  45. Wheeler AR, Moon H, Bird CA, Loo RRO, Kim CJ, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77(2):534–540CrossRefGoogle Scholar
  46. Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4(4):265–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Engineering The University of British ColumbiaVancouverCanada

Personalised recommendations