Microfluidics and Nanofluidics

, Volume 12, Issue 1–4, pp 229–235 | Cite as

Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber

  • Lothar Schmid
  • Achim Wixforth
  • David A. Weitz
  • Thomas FrankeEmail author
Research Paper


In this article, we demonstrate a novel microfluidic flow chamber driven by surface acoustic waves. Our device is a closed loop channel with an integrated acoustic micropump without external fluidic connections that allows for the investigation of small fluid samples in a continuous flow. The fabrication of the channels is particularly simple and uses standard milling and PDMS molding. The micropump consists of gold electrodes deposited on a piezoelectric substrate employing photolithography. We show that the pump generates a pressure-driven Poiseuille flow, investigate the acoustic actuation mechanism, characterize the flow profile for different channel geometries, and evaluate the driving pressure, efficiency and response time of the acoustic micropump. The fast response time of our pump permits the generation of non-stationary flows. To demonstrate the versatility of the device, we have pumped a red blood cell suspension at a physiological rate of 60 beats/min.


Microfluidics Lab-on-a-chip Micropump Surface acoustic waves (SAW) Acoustic streaming 



This study was supported by the Bayerische Forschungsstiftung, the German Excellence Initiative via Nanosystems Initiative Munich (NIM), the Center for Nanoscience (CeNS), and the German Academic Exchange Service DAAD.

Supplementary material

10404_2011_867_MOESM1_ESM.docx (116 kb)
Supplementary material 1 (DOCX 116 kb)

Supplementary material 2 (MOV 5222 kb)


  1. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  2. Brekhovskikh M (1980) Waves in layered media. Academic Press, New YorkzbMATHGoogle Scholar
  3. Coates RFW (1989) Underwater acoustic waves. Wiley, New YorkGoogle Scholar
  4. Dransfeld K, Salzmann E (1970) Excitation, detection, and attenuation of high-frequency elastic surface waves. In: Mason WP, Thurston RN (eds) Physical acoustics. Academic Press, New York, pp 219–272Google Scholar
  5. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70(23):4974–4984CrossRefGoogle Scholar
  6. Eckart C (1948) Vortices and streams caused by sound waves. Phys Rev 73(1):68CrossRefzbMATHMathSciNetGoogle Scholar
  7. Franke T, Wixforth A (2008) Microfluidics for miniaturized laboratories on a chip. ChemPhysChem 9(15):2140–2156CrossRefGoogle Scholar
  8. Franke T, Abate AR, Weitz DA, Wixforth A (2009a) Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip. doi: 10.1039/b906819h
  9. Franke T, Braunmüller S, Frommelt T, Wixforth A (2009b) Sorting of solid and soft objects in vortices driven by surface acoustic waves. In: Proceedings of SPIE 2009Google Scholar
  10. Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10(6):789–794CrossRefGoogle Scholar
  11. Frommelt T, Kostur M, Wenzel-Schafer M, Talkner P, Hanggi P, Wixforth A (2008) Microfluidic mixing via acoustically driven chaotic advection. Phys Rev Lett 100(3):034502–034504CrossRefGoogle Scholar
  12. Girardo S, Cecchini M, Beltram F, Cingolani R, Pisignano D (2008) Polydimethylsiloxane–LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels. Lab Chip 8(9):1557–1563CrossRefGoogle Scholar
  13. Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3):308–317CrossRefGoogle Scholar
  14. Hagen R, Behrends R, Kaatze U (2004) Acoustical properties of aqueous solutions of urea: reference data for the ultrasonic spectrometry of liquids. J Chem Eng Data 49(4):988–991CrossRefGoogle Scholar
  15. Landau LD, Lifshitz EM (1987) Course of theoretical physics. Pergamon Press, New YorkzbMATHGoogle Scholar
  16. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRefGoogle Scholar
  17. Masini L, Cecchini M, Girardo S, Cingolani R, Pisignano D, Beltram F (2010) Surface-acoustic-wave counterflowmicropumps for on-chip liquid motion control in two-dimensional microchannel arrays. Lab Chip 10(15):1997–2000CrossRefGoogle Scholar
  18. Nyborg WL (1965) Acoustic streaming. Academic Press, New YorkGoogle Scholar
  19. Renaudin A, Tabourier P, Zhang V, Camart JC, Druon C (2006) SAW nanopump for handling droplets in view of biological applications. Sensors Actuators B 113(1):389–397CrossRefGoogle Scholar
  20. Requa MV, Fraikin JL, Stanton MA, Cleland AN (2009) Nanoscale radiofrequency impedance sensors with unconditionally stable tuning. J Appl Phys 106:074308CrossRefGoogle Scholar
  21. Rossing TD (2007) Springer handbook of acoustics. Springer, New YorkCrossRefGoogle Scholar
  22. Schneider MF, Guttenberg Z, Schneider SW, Sritharan K, Myles VM, Pamukci U, Wixforth A (2008) An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies. ChemPhysChem 9(4):641–645CrossRefGoogle Scholar
  23. Slobodnik AJ, Delmonico RT, Conway ED (1973) Microwave acoustics handbook, vol 2. In: Physical Sciences Research Papers Air Force Cambridge Research Labs, Hanscom AFB, MAGoogle Scholar
  24. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Modern Phys 77(3):977–1026CrossRefGoogle Scholar
  25. Sritharan K, Strobl CJ, Schneider MF, Wixforth A, Guttenberg Z (2006) Acoustic mixing at low Reynold’s numbers. Appl Phys Lett 88(5):054102–054103CrossRefGoogle Scholar
  26. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefGoogle Scholar
  27. Tabeling P (2005) Introduction to microfluidics. Oxford University Press, OxfordGoogle Scholar
  28. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113CrossRefGoogle Scholar
  29. Whitesides GM, McDonald C (2002) Poly(dimethylsiloxane) as material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lothar Schmid
    • 1
  • Achim Wixforth
    • 1
  • David A. Weitz
    • 2
  • Thomas Franke
    • 1
    • 2
    Email author
  1. 1.Microfluidics Group, EP1Universität AugsburgAugsburgGermany
  2. 2.Department of Physics and School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations