Microfluidics and Nanofluidics

, Volume 11, Issue 6, pp 743–752

Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis

  • Junjie Zhu
  • Robert Cameron Canter
  • Gyunay Keten
  • Pallavi Vedantam
  • Tzuen-Rong J. Tzeng
  • Xiangchun Xuan
Research Paper


Particle and cell separations are critical to chemical and biomedical analyses. This study demonstrates a continuous-flow electrokinetic separation of particles and cells in a serpentine microchannel through curvature-induced dielectrophoresis. The separation arises from the particle size-dependent cross-stream dielectrophoretic deflection that is generated by the inherent electric field gradients within channel turns. Through the use of a sheath flow to focus the particle mixture, we implement a continuous separation of 1 and 5 μm polystyrene particles in a serpentine microchannel under a 15 kV/m DC electric field. The effects of the applied DC voltages and the serpentine length on the separation performance are examined. The same channel is also demonstrated to separate yeast cells (range in diameter between 4 and 8 μm) from 3 μm particles under an electric field as low as 10 kV/m. The observed focusing and separation processes for particles and cells in the serpentine microchannel are reasonably predicted by a numerical model.


Microfluidics Electrokinetics Particle separation Dielectrophoresis Curvature Serpentine microchannel 


  1. Ai Y, Park S, Zhu J, Xuan X, Beskok A, Qian S (2010) DC electrokinetic particle transport in an L-shaped microchannel. Langmuir 26:2937–2944CrossRefGoogle Scholar
  2. Barrett LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ (2005) Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal Chem 77:6798–6804CrossRefGoogle Scholar
  3. Baylon-Cardiel JL, Jesus-Perez NM, Chavez-Santoscoy AV, Lapizco-Encinas BH (2010) Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators. Lab Chip 10:3235–3242CrossRefGoogle Scholar
  4. Chen DF, Du HJ (2007) A dielectrophoretic barrier-based microsystem for separation of microparticles. Microfluid Nanofluid 3:603–610CrossRefGoogle Scholar
  5. Chen DF, Du HJ (2010) A microfluidic device for rapid concentration of particles in continuous flow by DC dielectrophoresis. Microfluid Nanofluid 9:281–291MathSciNetCrossRefGoogle Scholar
  6. Choi S, Park JK (2005) Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5:1161–1167CrossRefGoogle Scholar
  7. Choi SY, Park JK (2009) Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane). Lab Chip 9:1962–1965CrossRefGoogle Scholar
  8. Chou CF, Zenhausern F (2003) Electrodeless dielectrophoresis for micro total analysis systems. IEEE Eng Med Biol Mag 22:62–67CrossRefGoogle Scholar
  9. Church C, Zhu J, Wang G, Tzeng TJ, Xuan X (2009) Electrokinetic focusing and filtration of cells in a serpentine microchannel. Biomicrofluidics 3:044109CrossRefGoogle Scholar
  10. Church C, Zhu J, Huang G, Tzeng TJ, Xuan X (2010a) Integrated electrical concentration and lysis of cells in a microfluidic chip. Biomicrofluid 4:044101CrossRefGoogle Scholar
  11. Church C, Zhu J, Nieto J, Keten G, Ibarra E, Xuan X (2010b) Continuous particle separation in a serpentine microchannel via negative and positive dielectrophoretic focusing. J Micromech Microeng 20:065011CrossRefGoogle Scholar
  12. Church C, Zhu J, Xuan X (2011) Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Electrophoresis 32:527–531CrossRefGoogle Scholar
  13. Cummings EB (2003) Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Eng Med Biol Mag 22:75–84CrossRefGoogle Scholar
  14. Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103:14779–14784CrossRefGoogle Scholar
  15. Demierre N, Braschler T, Linderholm P, Seger U, van Lintel H, Renaud P (2007) Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7:355–365CrossRefGoogle Scholar
  16. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046CrossRefGoogle Scholar
  17. Ermolina I, Morgan H (2005) The electrokinetics properties of latex particles: comparison of electrophoresis and dielectrophoresis. J Colloid Interface Sci 285:419–428CrossRefGoogle Scholar
  18. Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983CrossRefGoogle Scholar
  19. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267CrossRefGoogle Scholar
  20. Han KH, Frazier AB (2008) Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab Chip 8:1079–1086CrossRefGoogle Scholar
  21. Hawkins BG, Kirby BJ (2010) Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems. Electrophoresis 31:3622–3633CrossRefGoogle Scholar
  22. Hawkins BG, Smith AE, Syed YA, Kirby BJ (2007) Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields. Anal Chem 79:7291–7300CrossRefGoogle Scholar
  23. Hawkins BG, Gleghorn JP, Kirby BJ (2009) Dielectrophoresis for cell and particle manipulations. In: Zahn JD (ed) Methods in bioengineering: biomicrofabrication and biomicrofluidics. Artech Press, Boston, pp 133–181Google Scholar
  24. Hoettges KF, Hubner Y, Broche LM, Ogin GEN, Kassv MP, Hughes A (2008) Dielectrophoresis-activated multiwell plate for label-free high-throughput drug assessment. Anal Chem 80:2063–2068CrossRefGoogle Scholar
  25. Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23:2569–2582CrossRefGoogle Scholar
  26. Huh D, Bahng JW, Ling Y, Wei H, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369–1376CrossRefGoogle Scholar
  27. Jen CP, Chen TW (2009) Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdev 11:597–607CrossRefGoogle Scholar
  28. Kang Y, Li D (2009) Electrokinetic motion of particles and cells in microchannels. Microfluid Nanofluid 6:431–460CrossRefGoogle Scholar
  29. Kang K, Xuan X, Kang Y, Li D (2006a) Effects of the DC-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99:064702CrossRefGoogle Scholar
  30. Kang K, Kang Y, Xuan X, Li D (2006b) Continuous separation of microparticles by size with DC-dielectrophoresis. Electrophoresis 27:694–702CrossRefGoogle Scholar
  31. Kang Y, Li D, Kalams SA, Eid JE (2008) DC-Dielectrophoretic separation of biological cells by size. Biomed Microdev 10:243–249CrossRefGoogle Scholar
  32. Kawamata T, Yamada M, Yasuda M, Seki M (2008) Continuous and precise particle separation by electroosmotic flow control in microfluidic devices. Electrophoresis 29:1423–1430CrossRefGoogle Scholar
  33. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MP (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2:1–13CrossRefGoogle Scholar
  34. Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Kalantar-zadeh K, Mitchel A (2009) Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis 30:3707–3717CrossRefGoogle Scholar
  35. Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Mitchell A, Kalantar-Zadeh K (2010) Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluid Nanofluid 9:411–426CrossRefGoogle Scholar
  36. Kim U, Shu CW, Dane KY, Daugherty PS et al (2007) Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. Proc Natl Acad Sci USA 104:20708–20712CrossRefGoogle Scholar
  37. Kim SB, Yoon SY, Sung HJ, Kim SS (2008) Cross-type optical particle separation in a microchannel. Anal Chem 80:2628–2630CrossRefGoogle Scholar
  38. Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, New YorkGoogle Scholar
  39. Kralj JG, Lis MTW, Schmidt MA, Jensen KF (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78:5019–5025CrossRefGoogle Scholar
  40. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980CrossRefGoogle Scholar
  41. Lapizco-Encinas BH, Rito-Palmomares M (2007) Dielectrophoresis for the manipulation of nanoparticles. Electrophoresis 28:4521–4538CrossRefGoogle Scholar
  42. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704CrossRefGoogle Scholar
  43. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39:1203–1217CrossRefGoogle Scholar
  44. Lewpiriyawong N, Yang C, Lam YC (2008) Dielectrophoretic manipulation of particles in a modified microfluidic H-filter with multi-insulating blocks. Biomicrofluidics 2:034105CrossRefGoogle Scholar
  45. Lewpiriyawong N, Yang C, Lam YC (2010) Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31:2622–2631CrossRefGoogle Scholar
  46. Morgan H, Green NG (2002) AC electrokinetic: colloids and nanoparticles. Research Studies Press, HertfordshireGoogle Scholar
  47. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:624–638Google Scholar
  48. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659CrossRefGoogle Scholar
  49. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811CrossRefGoogle Scholar
  50. Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15:426–432CrossRefGoogle Scholar
  51. Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79:4552–4557CrossRefGoogle Scholar
  52. Sabounchi P, Morales AM, Ponce P, Lee LP, Simmons BA, Davalos RV (2008) Sample concentration and impedance detection on a microfluidic polymer chip. Biomed Microdev 10:661–670CrossRefGoogle Scholar
  53. Santiago JG (2001) Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal Chem 73:2353–2365CrossRefGoogle Scholar
  54. Shafiee H, Caldwell JL, Sano MB, Davalos RD (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdev 11:997–1006CrossRefGoogle Scholar
  55. Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RD (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10:438–445CrossRefGoogle Scholar
  56. Shi JJ, Huang H, Stratton Z, Huang YP, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359CrossRefGoogle Scholar
  57. Simmons BA, Cummings EB, Davalos RV et al (2006) Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis. SAND2006-0654, Technical Report, Sandia National LaboratoriesGoogle Scholar
  58. Sridharan S, Zhu J, Hu G, Xuan X (2011) Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Electrophoresis 32 (in press). doi:10.1002/elps.201100011
  59. Srivastava SK, Gencoglu A, Minerick AR (2010) DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem 399:301–321CrossRefGoogle Scholar
  60. Srivastava SK, Baylon-Cardiel JL, Lapizco-Encinas BH, Minerick AR (2011) A continuous DC-insulator dielectrophoretic sorter of microparticles. J Chromatogr A 1218:1780–1789CrossRefGoogle Scholar
  61. Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784CrossRefGoogle Scholar
  62. Tsutsui H, Ho CM (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36:92–103CrossRefGoogle Scholar
  63. Vahey MD, Voldman J (2008) A new equilibrium method for continuous-flowcell sorting using dielectrophoresis. Anal Chem 80:3135–3143CrossRefGoogle Scholar
  64. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454CrossRefGoogle Scholar
  65. Wang L, Lu J, Marchenko SA, Monuki ES et al (2009) Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30:782–791CrossRefGoogle Scholar
  66. Wu ZG, Willing B, Bjerketorp J, Jansson JK, Hjort K (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–1199CrossRefGoogle Scholar
  67. Xuan X (2008) Joule heating in electrokinetic flow. Electrophoresis 29:33–43MathSciNetCrossRefGoogle Scholar
  68. Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9:1–16CrossRefGoogle Scholar
  69. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239CrossRefGoogle Scholar
  70. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471CrossRefGoogle Scholar
  71. Zhang CX, Manz A (2003) High-speed free-flow electrophoresis on chip. Anal Chem 75:5759–5766CrossRefGoogle Scholar
  72. Zhang C, Khoshmanesh K, Tovar-Lopez FJ, Mitchell A, Wlodarski W, Kalantar-Zadeh K (2009) Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluid Nanofluid 7:633–645CrossRefGoogle Scholar
  73. Zhu J, Xuan X (2009a) Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC electric fields. Electrophoresis 30:2668–2675CrossRefGoogle Scholar
  74. Zhu J, Xuan X (2009b) Particle electrophoresis and dielectrophoresis in curved microchannels. J Colloid Interface Sci 340:285–290CrossRefGoogle Scholar
  75. Zhu J, Tzeng TJ, Hu G, Xuan X (2009) Dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid 7:751–756CrossRefGoogle Scholar
  76. Zhu J, Tzeng TJ, Xuan X (2010a) Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31:1382–1388CrossRefGoogle Scholar
  77. Zhu T, Marrero F, Mao L (2010b) Continuous separation of non-magnetic particles inside ferrofluids. Microfluid Nanofluid 9:1003–1009CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Junjie Zhu
    • 1
  • Robert Cameron Canter
    • 1
  • Gyunay Keten
    • 1
  • Pallavi Vedantam
    • 2
  • Tzuen-Rong J. Tzeng
    • 2
  • Xiangchun Xuan
    • 1
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Department of Biological SciencesClemson UniversityClemsonUSA

Personalised recommendations