Microfluidics and Nanofluidics

, Volume 11, Issue 5, pp 537–544 | Cite as

Integrated microfluidic preconcentrator and immunobiosensor

  • Sowmya Kondapalli
  • John T. Connelly
  • Antje J. Baeumner
  • Brian J. Kirby
Research Paper

Abstract

We present a microfluidic biosensor that integrates membrane-based preconcentration with fluorescence detection. The concentration membrane was fabricated in polyacrylamide by an in situ photopolymerization technique at the junction of glass microchannels. Liposomes entrapping sulforhodamine B dye molecules were used for signal amplification. The biotin–streptavidin binding system was a model system for evaluating device performance. Biotinylated liposomes were preconcentrated at the membrane by applying an electric field across the membrane. The electric field causes the liposomes to migrate toward the membrane where they are concentrated by a sieving effect. Two orders of magnitude concentration was achieved after applying the electric field for only 2 min. The concentrated bolus was then eluted toward the detection unit, where the biotinylated liposomes were captured by immobilized streptavidin. The integrated system with the preconcentration module shows a 14-fold improvement in signal as opposed to a system that does not include preconcentration.

Keywords

Microfluidic biosensor Preconcentration Porous membrane Liposomes 

References

  1. Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82(12):4830–4847CrossRefGoogle Scholar
  2. Beyor N, Yi L, Seo TS, Mathies RA (2009) Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem 81(9):3523–3528CrossRefGoogle Scholar
  3. Cabrera CR, Yager P (2001) Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques. Electrophoresis 22(2):355–362CrossRefGoogle Scholar
  4. Chen L, Manz A, Day PJR (2007) Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7(11):1413–1423CrossRefGoogle Scholar
  5. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci USA 103(51):19272–19277CrossRefGoogle Scholar
  6. Edwards K, Curtis K, Sailor J, Baeumner A (2008) Universal liposomes: preparation and usage for the detection of mRNA. Anal Bioanal Chem 391(5):1689–1702CrossRefGoogle Scholar
  7. Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal Chem 77(1):57–63CrossRefGoogle Scholar
  8. Goral VN, Zaytseva NV, Baeumner AJ (2006) Electrochemical microfluidic biosensor for the detection of nucleic acid sequences. Lab Chip 6(3):414–421CrossRefGoogle Scholar
  9. Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78(14):4976–4984CrossRefGoogle Scholar
  10. Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, Singh AK (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci USA 104(13):5268–5273CrossRefGoogle Scholar
  11. Hjerten S (1967) Free zone electrophoresis. Chromatogr Rev 9(2):122–219CrossRefGoogle Scholar
  12. Hjerten S (1985) High-performance electrophoresis. Elimination of electroendosmosis and solute adsorption. J Chromatogr 347(2):191–198CrossRefGoogle Scholar
  13. Holmes DL, Stellwagen NC (1991a) Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis 12(9):612–619CrossRefGoogle Scholar
  14. Holmes DL, Stellwagen NC (1991b) Estimation of polyacrylamide gel pore size from Ferguson plots of normal and anomalously migrating DNA fragments. I. Gels containing 3% N,N′-methylenebisacrylamide. Electrophoresis 12(4):253–263CrossRefGoogle Scholar
  15. Jemere AB, Oleschuk RD, Ouchen F, Fajuyigbe F, Harrison DJ (2002) An integrated solid-phase extraction system for sub-picomolar detection. Electrophoresis 23(20):3537–3544CrossRefGoogle Scholar
  16. Jung B, Bharadwaj R, Santiago JG (2003) Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 24(19–20):3476–3483CrossRefGoogle Scholar
  17. Jung B, Bharadwaj R, Santiago JG (2006) On-chip millionfold sample stacking using transient isotachophoresis. Anal Chem 78(7):2319–2327CrossRefGoogle Scholar
  18. Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71(9):1815–1819CrossRefGoogle Scholar
  19. Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72(13):2995–3000CrossRefGoogle Scholar
  20. Kim SJ, Han J (2008) Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal Chem 80(18):7179 (Erratum to document cited in CA148:373127)CrossRefGoogle Scholar
  21. Kirby BJ, Wheeler AR, Zare RN, Fruetel JA, Shepodd TJ (2003) Programmable modification of cell adhesion and zeta potential in silica microchips. Lab Chip 3(1):5–10CrossRefGoogle Scholar
  22. Kusnezow W, Syagailo YV, Rueffer S, Klenin K, Sebald W, Hoheisel JD, Gauer C, Goychuk I (2006) Kinetics of antigen binding to antibody microspots: strong limitation by mass transport to the surface. Proteomics 6(3):794–803CrossRefGoogle Scholar
  23. Kwakye S, Baeumner A (2007) An embedded system for portable electrochemical detection. Sens Actuators B B123(1):336–343CrossRefGoogle Scholar
  24. Kwakye S, Goral VN, Baeumner AJ (2006) Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat. Biosens Bioelectron 21(12):2217–2223CrossRefGoogle Scholar
  25. Lagally ET, Scherer JR, Blazej RG, Toriello NM, Diep BA, Ramchandani M, Sensabaugh GF, Riley LW, Mathies RA (2004) Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem 76(11):3162–3170CrossRefGoogle Scholar
  26. Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y (2005) An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J Microbiol Methods 62(3):317–326CrossRefGoogle Scholar
  27. Li Y, De Voe DL, Lee CS (2003) Dynamic analyte introduction and focusing in plastic microfluidic devices for proteomic analysis. Electrophoresis 24(1–2):193–199CrossRefGoogle Scholar
  28. Lichtenberg J, Verpoorte E, de Rooij NF (2001) Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis. Electrophoresis 22(2):258–271CrossRefGoogle Scholar
  29. Liu P, Mathies RA (2009) Integrated microfluidic systems for high-performance genetic analysis. Trends Biotechnol 27(10):572–581CrossRefGoogle Scholar
  30. Mairhofer J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors 9(6):4804–4823CrossRefGoogle Scholar
  31. Moncada-Hernandez H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396(5):1805–1816CrossRefGoogle Scholar
  32. Munir A, Wang J, Li Z, Zhou HS (2010) Numerical analysis of a magnetic nanoparticle-enhanced microfluidic surface-based bioassay. Microfluid Nanofluid 8(5):641–652CrossRefGoogle Scholar
  33. Ohno K-I, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22):4443–4453CrossRefGoogle Scholar
  34. Ramsey JD, Collins GE (2005) Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem 77(20):6664–6670CrossRefGoogle Scholar
  35. Sadana A, Sii D (1992) Binding kinetics of antigen by immobilized antibody: influence of reaction order and external diffusional limitations. Biosens Bioelectron 7(8):559–568CrossRefGoogle Scholar
  36. Siebert STA, Reeves SG, Durst RA (1993) Liposome immunomigration field assay device for alachlor determination. Anal Chim Acta 282(2):297–305CrossRefGoogle Scholar
  37. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091–2104CrossRefGoogle Scholar
  38. Song S, Singh AK, Kirby BJ (2004a) Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal Chem 76(15):4589–4592CrossRefGoogle Scholar
  39. Song S, Singh AK, Shepodd TJ, Kirby BJ (2004b) Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes. Anal Chem 76(8):2367–2373CrossRefGoogle Scholar
  40. Tan W, Fan ZH, Qiu CX, Ricco AJ, Gibbons I (2002) Miniaturized capillary isoelectric focusing in plastic microfluidic devices. Electrophoresis 23(20):3638–3645CrossRefGoogle Scholar
  41. Wainright A, Williams SJ, Ciambrone G, Xue Q, Wei J, Harris D (2002) Sample pre-concentration by isotachophoresis in microfluidic devices. J Chromatogr A 979(1-2):69–80CrossRefGoogle Scholar
  42. Wang Y-C, Han J (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8(3):392–394CrossRefGoogle Scholar
  43. Wang HY, Foote RS, Jacobson SC, Schneibel JH, Ramsey JM (1997) Low temperature bonding for microfabrication of chemical analysis devices. Sens Actuators B B45(3):199–207Google Scholar
  44. Wang Y-C, Stevens AL, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77(14):4293–4299CrossRefGoogle Scholar
  45. Wang J, Zhang Y, Mohamadi MR, Kaji N, Tokeshi M, Baba Y (2009) Exceeding 20 000-fold concentration of protein by the on-line isotachophoresis concentration in poly(methyl methacrylate) microchip. Electrophoresis 30(18):3250–3256CrossRefGoogle Scholar
  46. Yu C, Davey MH, Svec F, Frechet JMJ (2001) Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem 73(21):5088–5096CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sowmya Kondapalli
    • 1
  • John T. Connelly
    • 2
  • Antje J. Baeumner
    • 2
  • Brian J. Kirby
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations