Microfluidics and Nanofluidics

, Volume 11, Issue 4, pp 501–506 | Cite as

Molecular dynamics simulation of nanoparticle diffusion in dense fluids

  • Valery Ya. RudyakEmail author
  • Sergey L. Krasnolutskii
  • Denis A. Ivanov
Research Paper


This article deals with a molecular dynamics simulation of the diffusion of nanoparticles in dense gases and liquids using the Rudyak–Krasnolutskii nanoparticle–molecule potential. Interaction of molecules of the carrier fluid is described by the Lennard-Jones potential. The behavior of the nanoparticle velocity autocorrelation function is studied. It is shown by molecular dynamics simulation that the diffusion coefficient of small nanoparticles depends greatly on the nanoparticle material. Relations are obtained between the diffusion coefficient of nanoparticles and the nanoparticle radius and the temperature of the medium. These relations differ from the corresponding Einstein relation for Brownian particles.


Velocity autocorrelation function Nanoparticle Diffusion coefficient Temperature dependence Nanofluid 



This study was supported in part by the Russian Foundation for Basic Research (grant no. 10-01-00074) and the Federal Special Program “Scientific and scientific-pedagogical personnel of innovative Russia in 2009–2013” (contracts nos. P230 and 14.740.11.0579).


  1. Kato T, Kikuchi K, Achiba YJ (1993) Measurement of the self-diffusion coefficient of C60 in benzene-D6 using 13C pulsed-gradient spin echo. Phys Chem 97:10251–10253CrossRefGoogle Scholar
  2. McPhie MG, Daivis PJ, Snook IK (2006) Viscosity of a binary mixture: approach to the hydrodynamic limit. Phys Rev E 74:031201CrossRefGoogle Scholar
  3. Nuevo MJ, Morales JJ (1998) Mass dependence of isotope self-diffusion by molecular dynamics. Phys Rev E 51:2026–2032CrossRefGoogle Scholar
  4. Ould-Kaddour F, Levesque D (2007) Diffusion of nanoparticles in dense fluids. J Chem Phys 127:154514CrossRefGoogle Scholar
  5. Pozhar LA (2000) Structure and dynamics of nanofluids: theory and simulations to calculate viscosity. Phys Rev E 61:1432–1446CrossRefGoogle Scholar
  6. Rapaport DC (2005) The art of molecular dynamics simulation. Cambridge University Press, CambridgeGoogle Scholar
  7. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. McGraw-Hill Book Company, New YorkGoogle Scholar
  8. Rudyak VYa, Krasnolutskii SL (1999) The interaction potential of dispersed particles with carrier gas molecules. In: Proceedings of the 21st international symposium on rarefied gas dynamics, vol 1. Cépadués-Éditions, Toulouse, pp 263–270Google Scholar
  9. Rudyak VYa, Krasnolutskii SL (2001) Kinetic description of nanoparticle diffusion in rarefied gas. Dokl Phys 46:897–899CrossRefGoogle Scholar
  10. Rudyak VYa, Krasnolutskii SL (2002) Diffusion of nanoparticles in a rarefied gas. Tech Phys 47(7):807–813CrossRefGoogle Scholar
  11. Rudyak VYa, Krasnolutskii SL (2003) On the viscosity of rarefied gas suspensions containing nanoparticles. Dokl Phys 48:583–586CrossRefGoogle Scholar
  12. Rudyak VYa, Kharlamov GV, Belkin AA (2000) The velocity autocorrelation function of nanoparticles in a hard-sphere molecular system. Tech Phys Lett 26(7):553–556CrossRefGoogle Scholar
  13. Rudyak VYa, Kharlamov GV, Belkin AA (2001) Diffusion of nanoparticle and macromolecules in dense gases and liquids. High Temp 39(2):264–271CrossRefGoogle Scholar
  14. Rudyak VYa et al (2002) Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas. Dokl Phys 47(10):758–761CrossRefGoogle Scholar
  15. Rudyak VYa et al (2008a) Simulation of transport processes by the molecular dynamics method. Self-diffusion coefficient. High Temp 46(1):30–39MathSciNetCrossRefGoogle Scholar
  16. Rudyak VYa, Krasnolutskii SL, Ivashchenko EN (2008b) Influence of the physical properties of the material of nanoparticles on their diffusion in rarefied gases. J Eng Phys Thermophys 81:520–524CrossRefGoogle Scholar
  17. Rudyak VYa, Dubtsov SN, Baklanov AM (2009) Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295–600 K at atmospheric pressure. J Aerosol Sci 40:833–843CrossRefGoogle Scholar
  18. Schofield P (1973) Computer simulation studies of the liquid state. Comput Phys Comm 5:17–23CrossRefGoogle Scholar
  19. Tuteja A, Mackay ME (2007) Breakdown of the continuum Stokes—Einstein relation for nanoparticle diffusion. Nano Lett 7(5):1276–1281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Valery Ya. Rudyak
    • 1
    Email author
  • Sergey L. Krasnolutskii
    • 1
  • Denis A. Ivanov
    • 1
  1. 1.Novosibirsk State University of Architecture and Civil EngineeringNovosibirskRussia

Personalised recommendations