Microfluidics and Nanofluidics

, Volume 11, Issue 3, pp 359–365 | Cite as

Monolithic fabrication of nanochannels using core–sheath nanofibers as sacrificial mold

Short Communication

Abstract

A simple and reliable approach for fabricating circular nanofluidic channels in polydimethylsiloxane (PDMS) microfluidic systems is described, which uses core–sheath nanofibers as sacrificial molds. The core–sheath structures consist of an electrospun polyvinylpyrrolidone (PVP) core and a sputtered aluminum sheath. The rupture of the sheath during master template releasing allows easy removal of the nanofibers to form the nanochannels. Straight nanochannels with the diameter as small as 390 nm are demonstrated. This technology is advantageous over existing nanochannel fabrication approaches in reduced risks of fluidic leakage and channel blocking, simpler fabrication process, lower cost and easier dimension control. This work provides a solid technical basis that enables development of various on-chip analytical devices for investigation of the unique transport phenomena at nanoscale.

Keywords

Nanofluidics PDMS Microfabrication Electrospinning Nanofiber 

References

  1. Bellan LM, Strychalski EA, Craighead HG (2008) Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers. J Vac Sci Technol B 26(5):1728–1731CrossRefGoogle Scholar
  2. Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRefGoogle Scholar
  3. Cho YH, Lee SW, Fujii T, Kim BJ (2008) Fabrication of silicon dioxide nanochannel arrays without nanolithography for manipulation of DNA molecule. Microelectron Eng 85:1275–1277CrossRefGoogle Scholar
  4. Cho YH, Park J, Park H, Cheng X, Kim BJ, Han A (2010) Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing. Microfluid Nanofluid 9:163–170CrossRefGoogle Scholar
  5. Chu K, Kim S, Chung H, Oh J, Seong T, An BH, Kim YK, Park JH, Do YR, Kim W (2010) Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates. Nanotechnology 21:425302CrossRefGoogle Scholar
  6. Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG (2004) Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76(6):1618–1626CrossRefGoogle Scholar
  7. Gong W, Xue J, Zhuang Q, Wu X, Xu S (2010) Fabrication of nanochannels with water-dissolvable nanowires. Nanotechnology 21:195302CrossRefGoogle Scholar
  8. Guder F, Yang Y, Krger M, Stevens GB, Zacharias M (2010) Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication. Appl Mater Interfaces 2(12):3473–3478CrossRefGoogle Scholar
  9. Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRefGoogle Scholar
  10. Huh D, Mills KL, Zhu X, Burns MA, Thouless MD, Takayama S (2007) Tunable elastomeric nanochannels for nanofluidic manipulation. Nat Mater 6(6):424–428CrossRefGoogle Scholar
  11. Jo K, Schramm TM, Schwartz DC (2009) A single-molecule barcoding system using nanoslits for DNA analysis: nanocoding. Methods Mol Biol 544:29–42CrossRefGoogle Scholar
  12. Lee C, Yang EH, Myung NV, George T (2003) A nanochannel fabrication technique without nanolithography. Nano Lett 3(10):1339–1340CrossRefGoogle Scholar
  13. Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171CrossRefGoogle Scholar
  14. Liang X, Morton KJ, Austin RH, Chou SY (2007) Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint mold fabrication and direct imprinting. Nano Lett 7(12):3774–3780CrossRefGoogle Scholar
  15. Lin PK, Fu CC, Chen YL, Chen YR, Wei PK, Kuan CH, Fann WS (2007) Static conformation and dynamics of single DNA molecules confined in nanoslits. Phys Rev E 76((1 Pt 1)):011806CrossRefGoogle Scholar
  16. Mao P, Han J (2009) Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab Chip 9(4):586–591CrossRefGoogle Scholar
  17. Nichols KP, Eijkel JC, Gardeniers HJ (2008) Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels. Lab Chip 8(1):173–175CrossRefGoogle Scholar
  18. Roy P, Dey T, Lee K, Kim D, Fabry B, Schmuki P (2010) Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. J Am Chem Soc 132(23):7893–7895CrossRefGoogle Scholar
  19. Tas NR, Mela P, Kramer T, Berenschot JW, van den Berg A (2003) Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett 3(11):1537–1540CrossRefGoogle Scholar
  20. Wang MH, Jing N, Su C, Kameoka J, Chou CK, Hung MC, Chang KA (2006) Electrospinning of silica nanochannels for single molecule detection. Appl Phys Lett 88:033106CrossRefGoogle Scholar
  21. Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3(2):213–216CrossRefGoogle Scholar
  22. Xu S, Shi Y, Kim SG (2006) Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17:4497–4501CrossRefGoogle Scholar
  23. Zhang L, Gu FX, Tong LM, Yin XF (2008) Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluid Nanofluid 5:727–732CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratory for Biomedical Microsystems, Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations