Microfluidics and Nanofluidics

, Volume 11, Issue 3, pp 307–316 | Cite as

Aqueous droplet manipulation by optically induced Marangoni circulation

Research Paper

Abstract

The manipulation of picoliter droplets is demonstrated using optically induced microscale circulatory flows. The circulation results from Marangoni effects induced by optical heating from light patterns created by a computer projector. Manipulation of single droplets and parallel manipulation of multiple droplets are achieved with induced forces of up to 1 nN and an average resolution of 146.5 μm.

Keywords

Marangoni force Thermocapillary flow Droplet manipulation 

Notes

Acknowledgments

This project is funding in part by the National Science Foundation, grant number EEC09-26632. The authors would like to thank Dr. Yi Zuo for assistance with surface tension measurements.

References

  1. Basu AS, Gianchandani YB (2009) A programmable array for contact-free manipulation of floating droplets on featureless substrates by the modulation of surface tension. J Microelectromech Syst 18(6):1163–1172CrossRefGoogle Scholar
  2. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  3. Chiou PY, Park SY, Wu MC (2008) Continuous optoelectrowetting for picoliter droplet manipulation. Appl Phys Lett 93(22):221110CrossRefGoogle Scholar
  4. Choi CH, Jung JH, Rhee Y, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdev 9(6):855–862CrossRefGoogle Scholar
  5. COMSOL Multiphysics (2008) Marangoni circulation, COMSOL Multiphysics User Manual. pp 391-402Google Scholar
  6. Cordero ML, Bumham DR, Baroud CN, McGloin D (2008) Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball. Appl Phys Lett 93(3):034107CrossRefGoogle Scholar
  7. Cordero ML, Rolfsnes HO, Burnham DR, Campbell PA, McGloin D, Baroud CN (2009) Mixing via thermocapillary generation of flow patterns inside a microfluidic drop. New J Phys 11(9):075033CrossRefGoogle Scholar
  8. Cygan ZT, Cabral JT, Beers KL, Amis EJ (2005) Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21(8):3629–3634CrossRefGoogle Scholar
  9. Darhuber AA, Valentino JP, Davis JM, Troian SM, Wagner S (2003) Microfluidic actuation by modulation of surface stresses. Appl Phys Lett 82(4):657–659CrossRefGoogle Scholar
  10. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046CrossRefGoogle Scholar
  11. Dixit SS, Kim H, Vasilyev A, Eid A, Faris GW (2010) Light-driven formation and rupture of droplet bilayers. Langmuir 26(9):6193–6200CrossRefGoogle Scholar
  12. Emilie V, Cordero ML, Gallaire F, Baroud CN (2009) Laser-induced force on a microfluidic drop: origin and magnitude. Langmuir 25(9):5127–5134CrossRefGoogle Scholar
  13. Eötvös R (1886) Ueber den zusammenhang der oberflächenspannung der flüssigkeiten mit ihrem molecularvolumen. Ann Phys 263(3):448–459Google Scholar
  14. Farahi RH, Passian A, Ferrell TL, Thundat T (2005) Marangoni forces created by surface plasmon decay. Opt Lett 30(6):616–618CrossRefGoogle Scholar
  15. Farahi RH, Rassian A, Zahrai S, Lereu AL, Ferrell TL, Thundat T (2006) Microscale Marangoni actuation: all-optical and all-electrical methods. Ultramicroscopy 106:815–821CrossRefGoogle Scholar
  16. Higuera FJ (2000) Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above. Phys Fluids 12(9):2186–2197MathSciNetCrossRefGoogle Scholar
  17. Holden MA, Needham D, Bayley H (2007) Functional bionetworks from nanoliter water droplets. J Am Chem Soc 129(27):8650–8655CrossRefGoogle Scholar
  18. Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angilè FE, Schmitz CHJ, Köster S et al (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8(10):1632–1639CrossRefGoogle Scholar
  19. Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10(3):274–280CrossRefGoogle Scholar
  20. Kotz KT, Noble KA, Faris GW (2004) Optical microfluidics. Appl Phys Lett 85(13):2658–2660CrossRefGoogle Scholar
  21. Lereu AL, Passian A, Farahi RH, Zahrai S, Thundat T (2006) Plasmonic Marangoni forces. J Eur Opt Soc Rapid Publ 1:06030CrossRefGoogle Scholar
  22. Luo C, Yang X, Fu Q, Sun M, Ouyang Q, Chen Y, Ji J (2006) Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation. Electrophoresis 27(10):1977–1983CrossRefGoogle Scholar
  23. Neale SL, Ohta AT, Hsu HY, Valley JK, Jamshidi A, Wu MC (2009) Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells. Opt Express 17(7):5232–5239CrossRefGoogle Scholar
  24. Palit R (1956) Thermodynamic interpretation of the Eötvös constant. Nature 177(4521):1180CrossRefGoogle Scholar
  25. Park SY, Pan CL, Wu TH, Kloss C, Kalim S et al (2008) Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium. Appl Phys Lett 92(15):151101CrossRefGoogle Scholar
  26. Park S, Teitell MA, Chiou PY (2010) Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab Chip 10(13):1655–1661CrossRefGoogle Scholar
  27. Passian A, Zahrai S, Lereu AL, Farahi RH, Ferrell TL, Thundat T (2006) Nonradiative surface plasmon assisted microscale Marangoni forces. Phys Rev E 73(6):066311CrossRefGoogle Scholar
  28. Schwartz JA, Vykoukal JV, Gascoyne PRC (2004) Droplet-based chemistry on a programmable micro-chip. Lab Chip 4(1):11–17CrossRefGoogle Scholar
  29. Selva B, Miralles V, Cantat I, Jullien MC (2010) Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping. Lab Chip 10(14):1835–1840CrossRefGoogle Scholar
  30. Solvas XCI, Srisa-Art M, Demello AJ et al (2010) Mapping of fluidic mixing in microdroplets with 1 μs time resolution using fluorescence lifetime imaging. Anal Chem 82(9):3950–3956CrossRefGoogle Scholar
  31. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45(44):7336–7356CrossRefGoogle Scholar
  32. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids: the science and application of droplets in microfluidic devices. Lab Chip 4(4):310–315CrossRefGoogle Scholar
  33. Zagnoni M, Cooper JM (2010) A microdroplet-based shift register. Lab Chip 10(22):3069CrossRefGoogle Scholar
  34. Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710CrossRefGoogle Scholar
  35. Zuo YY, Do C, Neumann AW (2007) Automatic measurement of surface tension from noisy images using a component labeling method. Colloids Surf A 299:109–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations