Advertisement

Microfluidics and Nanofluidics

, Volume 11, Issue 3, pp 235–244 | Cite as

Prototyping of microfluidic systems using a commercial thermoplastic elastomer

  • Emmanuel RoyEmail author
  • Matthias Geissler
  • Jean-Christophe Galas
  • Teodor Veres
Research Paper

Abstract

This article describes the fabrication of microfluidic networks (μFNs) from a commercially available (styrene)–(ethylene/butylene)–(styrene) (SEBS) block copolymer (BCP). The unique combination of hard and elastomeric properties provided by this material promotes high-throughput replication of fluidic structures using thermoforming technologies, while retaining the advantage of quick and easy assembly via conformal contact, as commonly achieved for devices fabricated from poly(dimethylsiloxane (PDMS). We employ Versaflex CL30, which is optically transparent, available at low cost (e.g., $2.50/Lbs), and likely to be compatible with a broad range of biological species. We demonstrate excellent fidelity in replication of fluidic structures using hot embossing lithography in conjunction with a photolithographically prepared Si/SU-8 master mold. Moreover, we introduce rapid prototyping of high-quality structures using an approach that we call soft thermoplastic lithography (STPL). Thanks to the rheological characteristics of the SEBS copolymer, STPL enables thermoforming on a heated master at temperatures around 170°C. Using this approach, replication can be completed within a very short period of time (e.g., less than 3 min) without the need of resorting to pressure- or vacuum-assisted instrumentation. Serving as a proof-of-concept, we devise a μFN that is suitable for the formation of miniaturized arrays comprising fluorescently labeled oligonucleotides and proteins on hard plastic substrates. Resultant spots are characterized by high fluorescent contrast, excellent edge definition, and uniform distribution of probes within the modified areas.

Keywords

Microfabrication Thermoplastic elastomers Hot embossing Microfluidics 

Notes

Acknowledgments

We thank our colleagues Hélène Roberge, François Normandin, Kien Mun Lau, Yves Simard, and Pierre Sammut for technical assistance as well as Régis Peytavi, Gerardo A. Diaz-Quijada and Daniel C. Tessier for useful discussion. This work was supported in part by the National Research Council of Canada, Génome Québec and Genome Canada.

References

  1. Benn JA, Hu J, Hogan BJ, Fry RC, Samson LD, Thorsen T (2006) Comparative modeling and analysis of microfluidic and conventional DNA microarrays. Anal Biochem 348:284–293CrossRefGoogle Scholar
  2. Cameron NS, Roberge H, Veres T, Jakeway SC, Crabtree HJ (2006) High fidelity, high yield production of microfluidic devices by hot embossing lithography: rheology and stiction. Lab Chip 6:936–941CrossRefGoogle Scholar
  3. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116CrossRefGoogle Scholar
  4. Creton C (2007) Block copolymers for adhesive applications. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: precise synthesis, materials properties and applications. Wiley-VCH, Weinheim, pp 1731–1752Google Scholar
  5. Cui B, Veres T (2006) Pattern replication of 100 nm to millimeter-scale features by thermal nanoimprint lithography. Microelectr Eng 83:1299–1305Google Scholar
  6. Diaz-Quijada GA, Peytavi R, Nantel A, Roy E, Bergeron MG, Dumoulin MM, Veres T (2007) Surface modification of thermoplastics—towards the plastic biochip for high throughput screening devices. Lab Chip 7:856–862CrossRefGoogle Scholar
  7. Donzel C, Geissler M, Bernard A, Wolf H, Michel B, Hilborn J, Delamarche E (2001) Hydrophilic poly(dimethylsiloxane) stamps for microcontact printing. Adv Mater 13:1164–1167CrossRefGoogle Scholar
  8. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315CrossRefGoogle Scholar
  9. Esch M, Kapur S, Irizarry G, Genova V (2003) Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab Chip 3:121–127CrossRefGoogle Scholar
  10. Fiorini GS, Lorenz RM, Kuo JS, Chiu DT (2004) Rapid prototyping of thermoset polyester microfluidic devices. Anal Chem 76:4697–4704CrossRefGoogle Scholar
  11. Geissler M, Roy E, Diaz-Quijada GA, Galas J-C, Veres T (2009) Microfluidic patterning of miniaturized DNA arrays on plastic substrates. ACS Appl Mater Interfaces 1:1387–1395CrossRefGoogle Scholar
  12. Holden G, Legge NR, Quirk R, Schroeder HE (1996) Thermoplastic elastomers, 2nd edn. Hanser/Gardner, CincinnatiGoogle Scholar
  13. Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277CrossRefGoogle Scholar
  14. Juang YJ, Lee LJ, Koelling KW (2002) Hot embossing in microfabrication. Part I: experimental. Polym Eng Sci 42:539–550CrossRefGoogle Scholar
  15. Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139–6144CrossRefGoogle Scholar
  16. Kim J, Chaudhury MK, Owen MJ, Orbeck T (2001) The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J Colloid Interface Sci 244:200–207CrossRefGoogle Scholar
  17. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554CrossRefGoogle Scholar
  18. Lei KF, Ahsan S, Budraa N, Li JW, Mai JD (2004) Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication. Sens Actuators A 114:340–346CrossRefGoogle Scholar
  19. Lin CH, Chao CH, Lan CW (2007) Low azeotropic solvent for bonding of PMMA microfluidic devices. Sens Actuators B 121:698–705CrossRefGoogle Scholar
  20. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRefGoogle Scholar
  21. Morèse-Séguéla B, St-Jacques M, Renaud JM, Prud’homme J (1980) Microphase separation in low molecular weight styrene–isoprene diblock copolymers studied by DSC and 13C NMR. Macromolecules 13:100–107CrossRefGoogle Scholar
  22. Munteanu SB, Vasile C (2005) Spectral and thermla characterization of styrene–butadiene copolymers with different architectures. J Optoelectron Adv Mater 7:3135–3148Google Scholar
  23. Odani H, Taira K, Nemoto N, Kurata M (1977) Diffusion and solution of gases and vapors in styrene–butadiene block copolymers. Polym Eng Sci 17:527–534CrossRefGoogle Scholar
  24. Rolland JP, Van Dam RM, Schorzman DA, Quake SR, DeSimone JM (2004) Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J Am Chem Soc 126:2322–2323CrossRefGoogle Scholar
  25. Rossier JS, Bercier P, Schwarz A, Loridant S (1999a) Topography, crystallinity and wettability of photoablated PET surfaces. Langmuir 15:5173–5178CrossRefGoogle Scholar
  26. Rossier JS, Roberts MA, Ferrigno R, Girault HH (1999b) Electrochemical detection in polymer microchannels. Anal Chem 71:4294–4299CrossRefGoogle Scholar
  27. Roy E, Siegrist J, Peytavi R, Diaz-Quijada GA, Roberge H, Normandin F, Jia G, Zoval J, Madou M, Bergeron MG, Dumoulin MM, Veres T (2008) Thermoplastic elastomers (TPE) block copolymers, a new material platform for microfluidics: proof-of-concept for complex siphon valving on CD. In: Proceedings of the 12th international conference on miniaturized systems for chemistry and life sciences, San Diego, pp 1576–1578Google Scholar
  28. Roy E, Galas J-C, Veres T (2010a) Thermoplastics elastomers for microfluidics valving and mixing, toward highthroughput fabrication of multilayers devices. In: Proceedings of the 14th international conference on miniaturized systems for chemistry and life sciences, Groningen, pp 1235–1237Google Scholar
  29. Roy E, Mounier M, Peytavi R, Siegrist J, Gorkin R, Madou M, Bergeron MG, Veres T (2010b) Enhanced microfabrication capabilities of thermoplastics elastomers for CD lab system including: lysing, PCR and hybridization microfluidic functions. In: Proceedings of the 14th international conference on miniaturized systems for chemistry and life sciences, Groningen, pp 1898–1901Google Scholar
  30. Sebastian JM, Lai C, Graessley WW, Register RA (2002a) Steady-shear rheology of block copolymer melts: zero-shear viscosity and shear disordering in body-centered-cubic systems. Macromol 35:2700–2706CrossRefGoogle Scholar
  31. Sebastian JM, Lai C, Graessley WW, Register RA (2002b) Steady-shear rheology of block copolymer melts: zero-shear viscosity and shear disordering in body-centered-cubic systems. Macromol 35:2707–2713CrossRefGoogle Scholar
  32. Senuma A (2000) Gas permeability coefficients of ethylene–vinyl acetate copolymer-modified poly(dimethylsiloxane) membranes. Double-column approach for two-phase materials. Macromol Chem Phys 201:568–576CrossRefGoogle Scholar
  33. Sotomayor Torres CM (2003) Alternative lithography: unleashing the potentials of nanotechnology. Kluwer, New YorkGoogle Scholar
  34. Squires TM, Quake SR (2009) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar
  35. Studer V, Pépin A, Chen Y (2002) Nanoembossing of thermoplastic polymers for microfluidic applications. Appl Phys Lett 80:3614–3616CrossRefGoogle Scholar
  36. Sudarsan AP, Wang J, Ugaz VM (2005) Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems. Anal Chem 77:5167–5173CrossRefGoogle Scholar
  37. Tserepi A, Gogolides E, Tsougeni K, Constantoudis V (2005) Tailoring the surface topography and wetting properties of oxygen-plasma treated polydimethylsiloxane. J Appl Phys 98:113502.1–113502.6CrossRefGoogle Scholar
  38. Wang C (2001) Tear strength of styrene–butadiene–styrene block copolymers. Macromol 34:9006–9014CrossRefGoogle Scholar
  39. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRefGoogle Scholar
  40. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  41. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:551–575CrossRefGoogle Scholar
  42. Yao D, Nagarajan P, Li L, Yi AP (2007) A two-station embossing process for rapid fabrication of surface microstructures on thermoplastic polymers. Polym Eng Sci 47:530–539CrossRefGoogle Scholar
  43. Zhang C, Xu J, Ma W, Zheng W (2006) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24:243–284CrossRefGoogle Scholar
  44. Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Emmanuel Roy
    • 1
    Email author
  • Matthias Geissler
    • 1
  • Jean-Christophe Galas
    • 1
  • Teodor Veres
    • 1
  1. 1.Industrial Materials Institute, National Research Council of CanadaBouchervilleCanada

Personalised recommendations