Microfluidics and Nanofluidics

, Volume 11, Issue 1, pp 93–104 | Cite as

Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles

  • Aminuddin A. Kayani
  • Adam F. Chrimes
  • Khashayar Khoshmanesh
  • Vijay Sivan
  • Eike Zeller
  • Kourosh Kalantar-zadeh
  • Arnan Mitchell
Research Paper

Abstract

This work demonstrates an optofluidic system, where dielectrophoretically controlled suspended nanoparticles are used to manipulate the properties of an optical waveguide. This optofluidic device is composed of a multimode polymeric rib waveguide and a microfluidic channel as its upper cladding. This channel integrates dielectrophoretic (DEP) microelectrodes and is infiltrated with suspended silica and tungsten trioxide nanoparticles. By applying electrical signals with various intensities and frequencies to the DEP microelectrodes, the nanoparticles can be concentrated close to the waveguide surface significantly altering the optical properties in this region. Depending on the particle refractive indices, concentrations, positions and dimensions, the light remains confined or is scattered into the surrounding media in the microfluidic channel.

Keywords

Dielectrophoresis Microfluidics Nanoparticles Polymeric waveguide Tuneability 

References

  1. Ahn K, Kerbage C, Hunt TP, Westervelt RM, Link DR, Weitz DA (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):024104CrossRefGoogle Scholar
  2. Airoudj A, Bêche B, Debarnot D, Gaviot E, Poncin-Epaillard F (2009) Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters. Opt Commun 282(19):3839–3845CrossRefGoogle Scholar
  3. Applegate RW, Squier J, Vestad T, Oakey J, Marr D, Bado P, Dugan M, Said A (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6(3):422–426CrossRefGoogle Scholar
  4. Ateya DA, Erickson JS, Howell PB, Hilliard LR, Golden JP, Ligler F (2008) The good, the bad and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391(5):1485–1498CrossRefGoogle Scholar
  5. Bernini R, De Nuccio E, Minardo A, Zeni L, Sarro P (2008) Liquid-core/liquid-cladding integrated silicon ARROW waveguides. Opt Commun 281(8):2062–2066CrossRefGoogle Scholar
  6. Calixto S, Rosete-Aguilar M, Sanchez-Marin FJ, Maranon V, Arauz-Lara JL, Olivares DM, Calixto-Solano M, Martinez-Prado EM (2010) Optofluidic compound microlenses made by emulsion techniques. Opt Express 18(18):18703–18711CrossRefGoogle Scholar
  7. Callister WD, Rethwisch DG (2010) Materials science and engineering: an introduction, 8th edn. John Wiley, Hoboken, NJGoogle Scholar
  8. Chen C-L (2007) Foundations for guided-wave optics. Wiley, HobokenGoogle Scholar
  9. Chrimes AF, Kayani AA, Khoshmanesh K, Stoddart PR, Mulvaney P, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoresis-Raman spectroscopy system for analysing suspended nanoparticles. Lab Chip. doi: 10.1039/c0lc00481b
  10. Compopiano S, Bernini R, Zeni L, Sarro P (2004) Microfluidic sensor based on integrated optical hollow waveguides. Opt Lett 29(16):1894–1896CrossRefGoogle Scholar
  11. Cui L, Holmes D, Morgan H (2001) The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis 22(18):3893–3901CrossRefGoogle Scholar
  12. Datta A, Eom I-Y, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta PK (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3(6):788–795CrossRefGoogle Scholar
  13. Domachuk P, Cronin-Golomb M, Eggleton BJ (2006) Application of optical trapping to beam manipulation in optofluidics. Opt Express 13(19):7265–7275CrossRefGoogle Scholar
  14. Dress P, Franke H (1996) A cylindrical liquid-core waveguide. Appl Phys B 63(1):12–19CrossRefGoogle Scholar
  15. Durr M, Kentsch J, Muller T, Schnelle T, Stelzle M (2003) Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 24(4):722–731CrossRefGoogle Scholar
  16. Erickson D, Mandal S, Yang AHJ, Cordovez B (2008) Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 4(1–2):33–52CrossRefGoogle Scholar
  17. Gaiduk VI, Crothers DSF (2006) Basic molecular mechanisms underlying complex permittivity of water and ice. J Phys Chem A 110(30):9361–9369CrossRefGoogle Scholar
  18. Gillet M, Aguir K, Lemire C, Gillet E, Schierbaum K (2004) The structure and electrical conductivity of vacuum-annealed WO3 thin films. Thin Solid Films 467(1–2):239–246CrossRefGoogle Scholar
  19. Groisman A, Zamek S, Campbell K, Pang L, Levy U, Fainman Y (2008) Optofluidic 1 × 4 switch. Opt Express 16(18):13499–13508CrossRefGoogle Scholar
  20. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110CrossRefGoogle Scholar
  21. Hitz B (2006) Thermal gradient in microfluidic channel creates a waveguide: technique offers potential path to readily reconfigurable optical components. Photon Spectra 40(5):26–28Google Scholar
  22. Jiang L, Pau S (2007) Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications. Appl Phys Lett 90(11):111108CrossRefGoogle Scholar
  23. Jiang L, Gerhardt KP, Myer B, Zohar Y, Pau S (2008) Evanescent-wave spectroscopy using an SU-8 waveguide for rapid quantitative detection of biomolecules. J Microelectromech Syst 17(6):1495–1500CrossRefGoogle Scholar
  24. Jiang H, Weng X, Li D (2010) Microfluidic whole-blood immunoassays. Microfluid Nanofluid 1–24. doi: 10.1007/s10404-010-0718-9
  25. Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24):4813–4851CrossRefGoogle Scholar
  26. Kalantar-zadeh K, Khoshmanesh K, Kayani AA, Nahavandi S, Mitchell A (2010) Dielectrophoretically tuneable optical waveguides using nanoparticles in microfluidics. Appl Phys Lett 96(10):101108CrossRefGoogle Scholar
  27. Kayani AA, Zhang C, Khoshmanesh K, Campbell JL, Mitchell A, Kalantar-zadeh K (2010) Novel tuneable optical elements based on nanoparticle suspensions in microfluidics. Electrophoresis 31(6):1071–1079CrossRefGoogle Scholar
  28. Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Kalantar-zadeh K, Mitchell A (2009) Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis 30(21):3707–3717CrossRefGoogle Scholar
  29. Khoshmanesh K, Zhang C, Campbell JL, Kayani AA, Nahavandi S, Mitchell A, Kalantar-zadeh K (2010a) Dielectrophoretically assembled particles: feasibility for optofluidic systems. Microfluid Nanofluid 9(4–5):755–763CrossRefGoogle Scholar
  30. Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2010b) Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluid Nanofluid 9(2–3):411–426CrossRefGoogle Scholar
  31. Kim JS, Kang JW, Kim JJ (2003) Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy. Jpn J Appl Phys 1 42(3):1277–1279CrossRefGoogle Scholar
  32. Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR (2009) Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens Bioelectron 24(5):1531–1535CrossRefGoogle Scholar
  33. Kuhn S, Measor P, Lunt EJ, Phillips BS, Deamer DW, Hawkins AR, Schmidt H (2009) Loss-based optical trap for on-chip particle analysis. Lab Chip 9(15):2212–2216CrossRefGoogle Scholar
  34. Lee KS, Lee H, L.T., Ram RJ et al (2007) Polymer waveguide backplanes for optical sensor interfaces in microfluidics. Lab Chip 7(11):1539–1545CrossRefGoogle Scholar
  35. Li H, Fan XD (2010) Characterization of sensing capability of optofluidic ring resonator biosensors. Appl Phys Lett 97(1):011105CrossRefGoogle Scholar
  36. Li XC, Wu J, Liu AQ, Li ZG, Soew YC, Huang HJ, Xu K, Lin JT (2008) A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip. Appl Phys Lett 93(19):193901CrossRefGoogle Scholar
  37. Lien V, Berdichevsky Y, Lo Y-H (2004) A prealigned process of integrating optical waveguides with microfluidic devices. IEEE Photon Technol Lett 16(6):1525–1527CrossRefGoogle Scholar
  38. Liu GL, Kim J, Lee LP (2006) All-optical microfluidic circuit for biochemical and cellular analysis powered by photoactive nanoparticles. In: Psaltis D, Fainman Y (eds) Proceedings of The society of photo-optical instrumentation engineers (SPIE), San Diego, CA, 2006. SPIE- International Society of Optical Engineering, pp 121–128Google Scholar
  39. Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002) Tunable microfluidic optical fiber. Appl Phys Lett 80(23):4294–4296CrossRefGoogle Scholar
  40. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182CrossRefGoogle Scholar
  41. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40CrossRefGoogle Scholar
  42. Mogensen KB, El-Ali J, Wolff A, Kutter JP (2003) Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. Appl Opt 42(19):4072–4079CrossRefGoogle Scholar
  43. Nguyen NT (2010) Micro-optofluidic lenses: a review. Biomicrofluidics 4(3):031501–031516CrossRefGoogle Scholar
  44. Nguyen NT, Kong TF, Goh JH, Low CLN (2007) A micro optofluidic splitter and switch based on hydrodynamic spreading. J Micromech Microeng 17(11):2169–2174CrossRefGoogle Scholar
  45. Okamoto K (2006) Fundamentals of optical waveguides, 2nd edn. Elsevier, BostonGoogle Scholar
  46. Pohl H (1978) Dielectrophoresis, the behavior of neutral matter in nonuniform electric fields, 1st edn. Cambridge University Press, New YorkGoogle Scholar
  47. Polynkin P, Polynkin A, Peyghambarian N, Mansuripur M (2005) Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Optics Letters 30(11):1273–1275CrossRefGoogle Scholar
  48. Qin D, Xia YN, Rogers JA, Jackman RJ, Zhao XM, Whitesides GM (1998) Microfabrication, microstructures and microsystems. Microsyst Technol Chem Life Sci 194:1–20CrossRefGoogle Scholar
  49. Risk WP, Kim HC, Miller RD (2004) Optical waveguides with an aqueous core and a low index nanoporous cladding. Opt Express 12(26):6446–6455CrossRefGoogle Scholar
  50. Schmid JH, Delage A, Lamontagne B, Lapointe J, Janz S, Cheben P, Densmore A, Waldron P, Xu DX, Yap KP (2008) Interference effect in scattering loss of high-index-contrast planar waveguides caused by boundary reflections. Optics Letters 33(13):1479–1481CrossRefGoogle Scholar
  51. Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluid 4(1-2):3–16CrossRefGoogle Scholar
  52. Schueller OJA, Zhao XM, Whitesides GM, Smith SP, Prentiss M (1999) Fabrication of liquid-core waveguides by soft lithography. Adv Mater 11(1):37–41CrossRefGoogle Scholar
  53. Seow YC, Lim SP, Lee HP (2009) Tunable optofluidic switch via hydrodynamic control of laminar flow rate. Appl Phys Lett 95(11):114105CrossRefGoogle Scholar
  54. Seow YC, Lim SP, Khoo BC, Lee HP (2010) An optofluidic refractive index sensor based on partial refraction. Sens Actuators B 147(2):607–611CrossRefGoogle Scholar
  55. Sheridan AK, Stewart G, Ur-Reyman H, Suyal N, Uttamchandani D (2009) In-plane integration of polymer microfluidic channels with optical waveguides—a preliminary investigation. IEEE Sens J 9(12):1627–1632CrossRefGoogle Scholar
  56. Tang S, Stan C, Whitesides GM (2008) Dynamically reconfigurable liquid-core liquid-cladding lends in a microfluidic channel. Lab Chip 8(3):395–401CrossRefGoogle Scholar
  57. Vestad T, Brown M, Oakey J, Marr DWM (2005) Reconfigurable microfluidic waveguides for onchip flow cytometry. Micro Total Anal Syst 1(296):653–655Google Scholar
  58. Vishnubhatla KC, Clark J, Lanzani G, Ramponi R, Osellame R, Virgili T (2009) Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels. Appl Phys Lett 94(4):041123CrossRefGoogle Scholar
  59. White CM, Holland LA, Famouri P (2010) Application of capillary electrophoresis to predict crossover frequency of polystyrene particles in dielectrophoresis. Electrophoresis 31(15):2664–2671CrossRefGoogle Scholar
  60. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  61. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach M, Paul K, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. PNAS 101(34):12434–12438CrossRefGoogle Scholar
  62. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mat Sci 28:153–184CrossRefGoogle Scholar
  63. Yan RJ, Yuan GW, Stephens MD, He XY, Henry CS, Dandy DS, Lear KL (2008) Evanescent field response to immunoassay layer thickness on planar waveguides. Appl Phys Lett 93(10):101110CrossRefGoogle Scholar
  64. Yin DL, Lunt EJ, Rudenko MI, Deamer DW, Hawkins AR, Schmidt H (2007) Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 7(9):1171–1175CrossRefGoogle Scholar
  65. Zhang C, Khoshmanesh K, Tovar-Lopez FJ, Mitchell A, Wlodarski W, Klantar-zadeh K (2009) Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluid Nanofluid 7(5):633–645CrossRefGoogle Scholar
  66. Zhang C, Khoshmanesh K, Mitchell A, Kalantar-zadeh K (2010) Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396(1):401–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aminuddin A. Kayani
    • 1
  • Adam F. Chrimes
    • 1
  • Khashayar Khoshmanesh
    • 2
  • Vijay Sivan
    • 1
  • Eike Zeller
    • 1
  • Kourosh Kalantar-zadeh
    • 1
  • Arnan Mitchell
    • 1
  1. 1.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Centre for Intelligent Systems ResearchDeakin UniversityWaurn PondsAustralia

Personalised recommendations