Microfluidics and Nanofluidics

, Volume 11, Issue 1, pp 75–86 | Cite as

Microfluidic concentration-on-demand combinatorial dilutions

  • Kangsun Lee
  • Choong Kim
  • Youngeun Kim
  • Byungwook Ahn
  • Jaehoon Bang
  • Jungkwun Kim
  • Rajagopal Panchapakesan
  • Yong-Kyu Yoon
  • Ji Yoon Kang
  • Kwang W. Oh
Article

Abstract

We present a microfluidic network-based combinatorial dilution device to generate on-demand combinatorial dilutions of all input samples in the range of a 3D simplex-centroid. The device consists of an initial concentration control module and a combinatorial dilution module. In the initial concentration control module, the concept of using a single common channel has been incorporated to generate desirable concentrations of each sample, diluted independently in response to variable input flow. Then, the diluted samples flow into the combinatorial dilution module to generate a full set of seven combinations from the three samples. First, we investigated the performance of the initial concentration controller by computational simulation (CFD-ACE+). The simulated output concentrations are extremely close to the expected theoretical values. Further, a PDMS-based initial concentration controller was fabricated, and its linearity and independency were tested with fluorescent dye. Then, we designed, simulated, and tested a combinatorial dilution device integrated with the initial concentration controller. Finally, as proof-of-concept, we performed a simple combinatorial cytotoxicity test with three drugs (Mitomycin C, Doxorubicin, and 5-FU) for MCF-7 cancer cells.

Keywords

Combinatorial device Design of experiment Dilution Microfluidic network Cytotoxicity test 

Notes

Acknowledgments

We gratefully acknowledge the support of NSF grants (ECCS-1002255 and ECCS-0736501) and the Intelligent Microsystems Center, which is carrying out one of the 21st Century’s Frontier R&D Projects sponsored by the Korea Ministry of Knowledge Economy. In addition, we would like to thank Femto Science, Korea, for providing a plasma system.

References

  1. Agrawal N, Pallos J, Slepko N, Apostol BL, Bodai L, Chang LW, Chiang AS, Thompson LM, Marsh JL (2005) Identification of combinatorial drug regimens for treatment of Huntington’s disease using Drosophila. Proc Natl Acad Sci USA 102(10):3777–3781CrossRefGoogle Scholar
  2. Baah D, Vickers D, Hollinger A, Floyd-Smith T (2008) Patterned dispersion of nanoparticles in hydrogels using microfluidics. Mater Lett 62(23):3833–3835CrossRefGoogle Scholar
  3. Bang H, Lim SH, Lee YK, Chung S, Chung C, Han DC, Chang JK (2004) Serial dilution microchip for cytotoxicity test. J Micromech Microeng 14(8):1165–1170CrossRefGoogle Scholar
  4. Campbell K, Groisman A (2007) Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 7(2):264–272CrossRefGoogle Scholar
  5. Chang JK, Bang H, Park SJ, Chung S, Chung C, Han DC (2003) Fabrication of the PDMS microchip for serially diluting sample with buffer. Microsyst Technol 9(8):555–558CrossRefGoogle Scholar
  6. Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9(3):417–426CrossRefGoogle Scholar
  7. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281CrossRefGoogle Scholar
  8. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125CrossRefGoogle Scholar
  9. Garcia-Egido E, Spikmans V, Wong SYF, Warrington BH (2003) Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip 3(2):73–76CrossRefGoogle Scholar
  10. Hattori K, Sugiura S, Kanamori T (2009) Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab Chip 9(12):1763–1772CrossRefGoogle Scholar
  11. Hattori K, Sugiura S, Kanamori T (2011) Microenvironment array chip for cell culture environment screening. Lab Chip 11(2):212–214CrossRefGoogle Scholar
  12. Holden MA, Kumar S, Castellana ET, Beskok A, Cremer PS (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B 92(1–2):199–207CrossRefGoogle Scholar
  13. Irimia D, Geba DA, Toner M (2006) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477CrossRefGoogle Scholar
  14. Ismagilov RF, Ng JMK, Kenis PJA, Whitesides GM (2001) Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools. Anal Chem 73(21):5207–5213CrossRefGoogle Scholar
  15. Jacobson SC, McKnight TE, Ramsey JM (1999) Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal Chem 71(20):4455–4459CrossRefGoogle Scholar
  16. Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830Google Scholar
  17. Kang JH, Um E, Park JK (2009) Fabrication of a poly(dimethylsiloxane) membrane with well-defined through-holes for three-dimensional microfluidic networks. J Micromech Microeng 19(4):045027CrossRefGoogle Scholar
  18. Kikutani Y, Horiuchi T, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T (2002) Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip 2(4):188–192CrossRefGoogle Scholar
  19. Kikutani Y, Ueno M, Hisamoto H, Tokeshi M, Kitamori T (2005) Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode. QSAR Comb Sci 24(6):742–757CrossRefGoogle Scholar
  20. Kirsten G, Maier WF (2004) Strategies for the discovery of new catalysts with combinatorial chemistry. Appl Surf Sci 223(1–3):87–101CrossRefGoogle Scholar
  21. Lee K, Kim C, Ahn B, Panchapakesan R, Full AR, Nordee L, Kang JY, Oh KW (2009) Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9(5):709–717CrossRefGoogle Scholar
  22. Lee K, Kim C, Jung G, Kim TS, Kang JY, Oh KW (2010a) Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid Nanofluid 8(5):677–685CrossRefGoogle Scholar
  23. Lee K, Kim C, Kim Y, Jung K, Ahn B, Kang JY, Oh KW (2010b) 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions. Biomed Microdevices 12(2):297–309CrossRefGoogle Scholar
  24. Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF, Staunton JE, Jin XW, Lee MS, Zimmermann GR, Borisy AA (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27(7):659–666CrossRefGoogle Scholar
  25. Maier WF, Stowe K, Sieg S (2007) Combinatorial and high-throughput materials science. Angew Chem Int Ed 46(32):6016–6067CrossRefGoogle Scholar
  26. Mosadegh B, Agarwal M, Torisawa YS, Takayama S (2010) Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Lab Chip 10(15):1983–1986CrossRefGoogle Scholar
  27. Neils C, Tyree Z, Finlayson B, Folch A (2004) Combinatorial mixing of microfluidic streams. Lab Chip 4(4):342–350CrossRefGoogle Scholar
  28. Paegel BM, Grover WH, Skelley AM, Mathies RA, Joyce GF (2006) Microfluidic serial dilution circuit. Anal Chem 78(21):7522–7527CrossRefGoogle Scholar
  29. Pereira SRM, Clerc F, Farrusseng D, van der Waal JC, Maschmeyer T (2007) Optimisation methodologies and algorithms for research on catalysis employing high-throughput methods: comparison using the selox benchmark. Comb Chem High Throughput Screen 10(2):149–159CrossRefGoogle Scholar
  30. Pihl J, Sinclair J, Sahlin E, Karlsson M, Petterson F, Olofsson J, Orwar O (2005) Microfluidic gradient-generating device for pharmacological profiling. Anal Chem 77(13):3897–3903CrossRefGoogle Scholar
  31. Pirnia F, Schneider E, Betticher DC, Borner MM (2002) Mitomycin C induces apoptosis and caspase-8 and-9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ 9(9):905–914CrossRefGoogle Scholar
  32. Sagara N, Katoh M (2000) Mitomycin C resistance induced by TCF-3 overexpression in gastric cancer cell line MKN28 is associated with DT-diaphorase down-regulation. Cancer Res 60(21):5959–5962Google Scholar
  33. Schudel BR, Choi CJ, Cunningham BT, Kenis PJA (2009) Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip 9(12):1676–1680CrossRefGoogle Scholar
  34. Singh B, Dahiya M, Saharan P, Ahuja N (2005) Optimizing drug delivery systems using systematic “design of experiments”. Part II: retrospect and prospects. Crit Rev Ther Drug Carrier Syst 22(3):215–293CrossRefGoogle Scholar
  35. Sugiura S, Edahiro J, Kikuchi K, Sumaru K, Kanamori T (2008) Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Biotechnol Bioeng 100(6):1156–1165CrossRefGoogle Scholar
  36. Tsao CW, Tao S, Chen CF, Liu JK, DeVoe DL (2010) Interfacing microfluidics to LDI-MS by automatic robotic spotting. Microfluid Nanofluid 8(6):777–787CrossRefGoogle Scholar
  37. Tye H (2004) Application of statistical ‘design of experiments’ methods in drug discovery. Drug Discov Today 9(11):485–491CrossRefGoogle Scholar
  38. Webster DC (2008) Combinatorial and high-throughput methods in macromolecular materials research and development. Macromol Chem Phys 209(3):237–246CrossRefGoogle Scholar
  39. Yang K, EI-Haik BS (2008) Design for six sigma: a roadmap for product development, 2nd edn. McGraw Hill Professional, New York, NYGoogle Scholar
  40. Yang J, Li CW, Yang MS (2002) Lab-on-a-chip (microfluidics) technology. Acta Biochim Biophys Sin 34(2):117–123Google Scholar
  41. Yu ZTF, Kamei KI, Takahashi H, Shu CJ, Wang XP, He GW, Silverman R, Radu CG, Witte ON, Lee KB, Tseng HR (2009) Integrated microfluidic devices for combinatorial cell-based assays. Biomed Microdevices 11(3):547–555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kangsun Lee
    • 1
  • Choong Kim
    • 2
  • Youngeun Kim
    • 2
  • Byungwook Ahn
    • 1
  • Jaehoon Bang
    • 2
  • Jungkwun Kim
    • 3
  • Rajagopal Panchapakesan
    • 1
  • Yong-Kyu Yoon
    • 3
  • Ji Yoon Kang
    • 2
  • Kwang W. Oh
    • 1
  1. 1.SMALL (Sensors and MicroActuators Learning Lab), Department of Electrical EngineeringThe State University of New York at BuffaloBuffaloUSA
  2. 2.Nano-Bioresearch Center, Korea Institute of Science and TechnologySeoulKorea
  3. 3.MnM (Multidisciplinary Nano and Microsystem) Lab, Department of Electrical EngineeringThe State University of New York at BuffaloBuffaloUSA

Personalised recommendations