Microfluidics and Nanofluidics

, Volume 10, Issue 6, pp 1289–1298 | Cite as

A modified microfluidic chip for fabrication of paclitaxel-loaded poly(l-lactic acid) microspheres

  • Tianxi He
  • Qionglin LiangEmail author
  • Kai Zhang
  • Xuan Mu
  • Tingting Luo
  • Yiming Wang
  • Guoan LuoEmail author
Original Paper


In this article, we present a simple PDMS surface modification method based on poly(vinyl alcohol)/glycerol (PVA/Gly) solution immersion, self-assembled absorption, and heat treatment. The results of contact angle and ATR-FTIR demonstrate the superhydrophilic surface in modified PDMS. It can allow for the stable production of monodisperse droplet in a highly reproducible manner. In addition, we demonstrate the fabrication of monodisperse paclitaxel (PTX) loaded poly(l-lactic acid) (PLLA) microspheres on this kind of modification chip with solvent evaporation. The PLLA microspheres can be adjusted to a range of different sizes depending on the system flow rate. Determination of microsphere size is carried out by optical microscopy and image analysis to reveal less than 4% variation in microsphere size. Compared with the results of published papers, the presented data demonstrate that PTX-loaded PLLA microspheres show good physical properties (spherical and discrete), high-drug loading, encapsulation efficiency, a small initial burst, and sustained-release behavior due to outstanding monodispersity. With the characteristic to prepare high-quality, monodisperse, biodegradable microspheres, the versatile and simple microfluidic method facilitates the development of more reliable and reproducible drug delivery systems, which have great potential to benefit pharmaceutical and biological applications.


Microfluidic Droplets Poly(l-lactic acid) microsphere Paclitaxel Drug delivery Monodisperse 



This research was supported by funding from National Basic Research Program (973 Program) of China (No. 2007CB714505), National Major Special Project of Science and Technology (No. 2009ZX09311-01) and Ministry of Education of China (No. 20080031012). The authors would like to thank Professor Zhang Xi (Tsinghua University) for measuring contact angle, ATR-FTIR and AFM images.

Supplementary material

10404_2010_760_MOESM1_ESM.doc (679 kb)
Supplementary material 1 (DOC 679 kb)

Supplementary material 2 (MSG 368 kb)


  1. Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37CrossRefGoogle Scholar
  2. Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21:1–16CrossRefGoogle Scholar
  3. Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18CrossRefGoogle Scholar
  4. Gong XQ, Peng SL, Wen WJ, Shen P, Li WH (2009) Design and fabrication of magnetically functionalized core/shell microspheres for smart drug delivery. Adv Funct Mater 19:292–297CrossRefGoogle Scholar
  5. Huang SH, Khoo HS, ChienChang SH, Tseng FG (2008) Synthesis of bio-functionalized copolymer particles bearing carboxyl groups via a microfluidic device. Microfluid Nanofluid 5:459–468CrossRefGoogle Scholar
  6. Huang KS, Lu K, Yeh CS, Chung SR, Lin CH, Yang CH, Dong YS (2009) Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J Control Release 137:15–19CrossRefGoogle Scholar
  7. Hung LH, The SY, Jester J, Lee AP (2010) PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab Chip 10:1820–1825CrossRefGoogle Scholar
  8. Kang YQ, Wu J, Yin GF, Huang ZB, Liao XM, Yao YD, Ouyang P, Wang HJ, Yang Q (2008) Characterization and biological evaluation of paclitaxel-loaded poly(l-lactic acid) microparticles prepared by supercritical CO2. Langmuir 24:7432–7441CrossRefGoogle Scholar
  9. Kim DK, Dobson J (2009) Nanomedicine for targeted drug delivery. J Mater Chem 19:6294–6307CrossRefGoogle Scholar
  10. Kim J, Chaudhury MK, Owen MJ, Orbeck T (2001) The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J Colloid Interface Sci 244:200–207CrossRefGoogle Scholar
  11. Kim JW, Utada AS, Fernandez-Nieves A, Hu ZB, Weitz DA (2007) Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed 46:1819–1822CrossRefGoogle Scholar
  12. Kozlov M, Quarmyne M, Chen W, MaCarthy TJ (2003) Adsorption of poly (vinyl alcohol) onto hydrophobic substrates. A general approach for hydrophilizing and chemically activating surface. Macromolecules 36:6054–6059CrossRefGoogle Scholar
  13. Lam CNC, Kim N, Hui D, Kwok DY, Hair ML, Neumann AW (2001) The effect of liquid properties to contact angle hysteresis. Colloids Surf A 189:265–278CrossRefGoogle Scholar
  14. Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7:767–783CrossRefGoogle Scholar
  15. Lee LY, Wang CH, Smith KA (2008) Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel. J Control Release 125:96–106CrossRefGoogle Scholar
  16. Lensen D, Breukelen KV, Vriezema DM, Hest JCMV (2010) Preparation of biodegradable liquid core PLLA microcapsules and hollow PLLA microcapsules using microfluidics. Macromol Biosci 10:475–480Google Scholar
  17. Liang SM, Huang QR, Liu LS, Yam KL (2009) Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinylalcohol) blending films. Macromol Chem Phys 210:832–839CrossRefGoogle Scholar
  18. Liggins RT, Burt HM (2001) Paclitaxel loaded poly(l-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm 222:19–33CrossRefGoogle Scholar
  19. Liggins RT, Burt HM (2004) Paclitaxel-loaded poly(l-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release. Int J Pharm 282:61–71CrossRefGoogle Scholar
  20. Liggins RT, D’Amours S, Demetrick JS, Machan LS, Burt HM (2000) Paclitaxel loaded poly(l-lactic acid) microspheres for the prevention of intraperitoneal carcinomatosis after a surgical repair and tumor cell spill. Biomaterials 21:1959–1969CrossRefGoogle Scholar
  21. Lim HJ, Cho EC, Shim J, Kim DH, An EJ, Kim J (2008) Polymer-associated liposomes as a novel delivery system for cyclodextrin-bound drugs. J Colloid Interface Sci 320:460–468CrossRefGoogle Scholar
  22. Little SR, Lynn DM, Ge Q, Anderson DG, Puram SV, Chen J, Eisen HN, Langer R (2004) Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci USA 101:9534–9539CrossRefGoogle Scholar
  23. Lu JJ, Jackson JK, Gleave ME, Burt HM (2008) The preparation and characterization of anti-VEGFR2 conjugated, paclitaxel-loaded PLLA or PLGA microspheres for the systemic targeting of human prostate tumors. Cancer Chemother Pharm 61:997–1005CrossRefGoogle Scholar
  24. Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202CrossRefGoogle Scholar
  25. Mora MF, Giacomelli CE, Garcia CD (2007) Electrophoretic effects of the adsorption of anionic surfactants to poly(dimethylsiloxane)-coated capillaries. Anal Chem 79:6675–6681CrossRefGoogle Scholar
  26. Murua A, Portero A, Orive G, Hernandez RM, Castro MD, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83CrossRefGoogle Scholar
  27. Nisisako T, Torri T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–293CrossRefGoogle Scholar
  28. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156CrossRefGoogle Scholar
  29. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477CrossRefGoogle Scholar
  30. Park JS, Lee JH, Shin HS, Lee TW, Kim MS, Khang G, Rhee JM, Lee HK, Lee HB (2007) Biodegradable polymer microspheres for controlled drug release. Tissue Eng Regen Med 4:347–359Google Scholar
  31. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111Google Scholar
  32. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36CrossRefGoogle Scholar
  33. Shum HC, Kim JW, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9549CrossRefGoogle Scholar
  34. Skwarczynski M, Hayashi Y, Kiso Y (2006) Paclitaxel prodrugs: toward smarter delivery of anticancer agents. J Med Chem 49:7253–7269CrossRefGoogle Scholar
  35. Song TT, Yuan XB, Sun AP, Wang H, Kang CS, Ren Y, He B, Sheng J, Pu PY (2010) Preparation of injectable paclitaxel sustained release microspheres by spray drying for inhibition of glioma in vitro. J Appl Polym Sci 115:1534–1539CrossRefGoogle Scholar
  36. Spencer CM, Faulds D (1994) Paclitaxel—a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48:794–847CrossRefGoogle Scholar
  37. Suyatma NE, Tighzert L, Copinet A (2005) Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957CrossRefGoogle Scholar
  38. Szebeni J, Muggia FM, Alving CR (1998) Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst 90:300–306CrossRefGoogle Scholar
  39. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701CrossRefGoogle Scholar
  40. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220CrossRefGoogle Scholar
  41. Wang LY, Ma GH, Su ZG (2005) Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release 106:62–75CrossRefGoogle Scholar
  42. Wei Z, Hao JG, Yuan S, Li YJ, Juan W, Sha XY, Fang XL (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376:176–185CrossRefGoogle Scholar
  43. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  44. Wong I, Ho CM (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306CrossRefGoogle Scholar
  45. Wu DP, Luo Y, Zhou XM, Dai ZP, Lin BC (2005) Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation. Electrophoresis 26:211–218CrossRefGoogle Scholar
  46. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  47. Xu S, Nie ZH, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44:724–728CrossRefGoogle Scholar
  48. Xu QB, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5:1575–1581CrossRefGoogle Scholar
  49. Yeh CH, Lin YC (2009) Using a cross-flow microfluidic chip for monodisperse UV-photopolymerized microparticles. Microfluid Nanofluid 6:277–283Google Scholar
  50. Zhang K, Liang QL, Ma S, Mu X, Hu P, Wang YM, Luo GA (2009) On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 9:2992–2999CrossRefGoogle Scholar
  51. Zhao LB, Pan L, Zhang K, Guo SS, Liu W, Wang Y, Chen Y, Zhao XZ, Chan HLW (2009) Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 9:2981–2986CrossRefGoogle Scholar
  52. Zhou JW, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRefGoogle Scholar
  53. Zhu LP, Li YG, Zhang QH, Wang HZ, Zhu MF (2010) Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device. Biomed Microdevices 12:169–177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Logistic Engineering of UniversityChongqingPeople’s Republic of China
  3. 3.School of PharmacyEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations