Microfluidics and Nanofluidics

, Volume 10, Issue 5, pp 1019–1032 | Cite as

Electrohydrodynamic modeling of microdroplet transient dynamics in electrocapillary-based digital microfluidic devices

  • Ali Ahmadi
  • Jonathan F. Holzman
  • Homayoun Najjaran
  • Mina Hoorfar
Original Paper

Abstract

In this article, a multiphysics approach is used to develop a model for microdroplet motion and dynamics in contemporary electrocapillary-based digital microfluidic systems. Electrostatic and hydrodynamic pressure effects are combined to calculate the driving and opposing forces as well as the moving boundary of the microdroplet. The proposed methodology accurately predicts the microdroplet electrohydrodynamics which is crucial for the design, control and fabrication of such devices. The results obtained from the model are in excellent agreement with expected trends and experimental results.

Keywords

Digital microfluidics Electrocapillary Microdroplet Electrohydrodynamics 

References

  1. Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluidics Nanofluidics 4(4):349–355CrossRefGoogle Scholar
  2. Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21(8):920–925CrossRefGoogle Scholar
  3. Afkhami S, Bussmann M (2008) Height functions for applying contact angles to 2d vof simulations. Int J Numer Methods Fluids 57(4):453–472CrossRefMATHGoogle Scholar
  4. Ahmadi A, Najjaran H, Holzman JF, Hoorfar M (2009) Two-dimensional flow dynamics in digital microfluidic systems. J Micromech Microeng 19(6):065003-1–065003-7Google Scholar
  5. Arzpeyma A, Bhaseen S, Dolatabadi A, Wood-Adams P (2008) A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting. Colloids Surf A 323(1–3):28–35CrossRefGoogle Scholar
  6. Bahadur V, Garimella SV (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 16(8):1494–1503CrossRefGoogle Scholar
  7. Baird E, Young P, Mohseni K (2007) Electrostatic force calculation for an ewod-actuated droplet. Microfluidics Nanofluidics 3(6):635–644CrossRefGoogle Scholar
  8. Berge B (1993) lectrocapillarit et mouillage de films isolants par l’eau= electrocapillarity and wetting of insulator films by water. C R Acad Sci 317(2):157–163Google Scholar
  9. Bhattacharjee B, Najjaran H (2010) Simulation of droplet position control in digital microfluidic systems. J Dyn Syst Meas Control 132(1):014501-1–014501-3Google Scholar
  10. Blake T, Coninck JD (2002) The influence of solidliquid interactions on dynamic wetting. Adv Colloid Interface Sci 96(1–3):21–36CrossRefGoogle Scholar
  11. Brassard D, Malic L, Normandin F, Tabrizian M, Veres T (2008) Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8(8):1342–1349CrossRefGoogle Scholar
  12. Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(8):86101Google Scholar
  13. Bussmann M, Mostaghimi J, Chandra S (1999) On a three-dimensional volume tracking model of droplet impact. Phys Fluids 11:1406–1417CrossRefMATHGoogle Scholar
  14. Chang YH, Lee GB, Huang FC, Chen YY, Lin JL (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdev 8(3):215–225CrossRefGoogle Scholar
  15. Cho SK, Fan SK, Moon H, Kim CJ (2002) Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In: The fifteenth IEEE international conference on micro electro mechanical systems, Las Vegas, NV , USA, pp 32–35Google Scholar
  16. Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80CrossRefGoogle Scholar
  17. Cooney CG, Chen CY, Emerling MR, Nadim A, Sterling JD (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluidics Nanofluidics 2(5):435–446CrossRefGoogle Scholar
  18. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible. Microfluidics Nanofluidics 3(3):245–281CrossRefGoogle Scholar
  19. Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pamula VK, Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24(1):10–24CrossRefGoogle Scholar
  20. Fan SK, Hsieh TH, Lin DY (2009) General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab Chip 9(9):1236–1242CrossRefGoogle Scholar
  21. Fouillet Y, Jary D, Chabrol C, Claustre P, Peponnet C (2008) Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluidics Nanofluidics 4(3):159–165CrossRefGoogle Scholar
  22. Gao L, McCarthy TJ (2006) Contact angle hysteresis explained. Langmuir 22(14):6234–6237CrossRefGoogle Scholar
  23. Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82(6):2310–2316CrossRefGoogle Scholar
  24. Jebrail MJ, Wheeler AR (2009) Digital microfluidic method for protein extraction by precipitation. Anal Chem 81(1):330–335CrossRefGoogle Scholar
  25. Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15(6):1184–1187CrossRefGoogle Scholar
  26. Kang KH (2002) How electrostatic fields change contact angle in electrowetting. Langmuir 18(26):10318–10322Google Scholar
  27. Keshavarz-Motamed Z, Kadem L, Dolatabadi A (2010) Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels. Microfluidics Nanofluidics 8(1):47–56CrossRefGoogle Scholar
  28. Kumari N, Bahadur V, Garimella SV (2008) Electrical actuation of dielectric droplets. J Micromech Microeng 18(8):5018CrossRefGoogle Scholar
  29. Lee J, Kim CJ (2000) Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst 9(2):171–180CrossRefMATHGoogle Scholar
  30. Lee J, Moon H, Fowler J, Schoellhammer T, Kim CJ (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A 95(2-3):259–268CrossRefGoogle Scholar
  31. Lomax H, Pulliam TH, Zingg DW (2001) Fundamentals of computational fluid dynamics. Springer, BerlinMATHGoogle Scholar
  32. Lu HW, Bottausci F, Fowler JD, Bertozzi AL, Meinhart C, Kim CJ (2008) A study of ewod-driven droplets by piv investigation. Lab Chip 8(3):456–461CrossRefGoogle Scholar
  33. Luk VN, Wheeler AR (2009) A digital microfluidic approach to proteomic sample processing. Anal Chem 81(11):4524–4530CrossRefGoogle Scholar
  34. Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic loc devices. Lab Chip 10(4):418–431CrossRefGoogle Scholar
  35. Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619CrossRefGoogle Scholar
  36. Moon H, Cho SK, Garrell RL (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92(7):4080–4087CrossRefGoogle Scholar
  37. Moon H, Wheeler AR, Garrell RL, Loo JA, Kim CJ (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by maldi-ms. Lab Chip 6(9):1213–1219CrossRefGoogle Scholar
  38. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774CrossRefGoogle Scholar
  39. Nichols KP, Gardeniers HJGE (2007) A digital microfluidic system for the investigation of pre-steady-state enzyme kinetics using rapid quenching with maldi-tof mass spectrometry. Anal Chem 79(22):8699–8704CrossRefGoogle Scholar
  40. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726CrossRefGoogle Scholar
  41. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101CrossRefGoogle Scholar
  42. Ren H, Fair RB, Pollack MG, Shaughnessy EJ (2002) Dynamics of electro-wetting droplet transport. Sens Actuators B 87(1):201–206CrossRefGoogle Scholar
  43. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091–2104Google Scholar
  44. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315CrossRefGoogle Scholar
  45. Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic biochips. In: Proceedings of the conference on Design, automation and test in Europe. European Design and Automation Association, Munich, Germany, pp 323–328Google Scholar
  46. Thamida SK, Chang HC (2002) Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges. Phys Fluids 14:4315–4328CrossRefGoogle Scholar
  47. Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6(1):96–104CrossRefGoogle Scholar
  48. Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37(12):2465–2470CrossRefGoogle Scholar
  49. Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11(4):583–591CrossRefGoogle Scholar
  50. Walker SW, Shapiro B, Nochetto RH (2009) Electrowetting with contact line pinning: Computational modeling and comparisons with experiments. Phys Fluids 21:102103-1–102103-16Google Scholar
  51. Wheeler AR, Moon H, Bird CA, Loo RRO, Kim CJ, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77(2):534–540CrossRefGoogle Scholar
  52. Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4(4):265–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ali Ahmadi
    • 1
  • Jonathan F. Holzman
    • 1
  • Homayoun Najjaran
    • 1
  • Mina Hoorfar
    • 1
  1. 1.School of EngineeringUniversity of British ColumbiaKelownaCanada

Personalised recommendations