Microfluidics and Nanofluidics

, Volume 10, Issue 4, pp 935–939 | Cite as

Controlled counter-flow motion of magnetic bead chains rolling along microchannels

  • Marc Karle
  • Johannes Wöhrle
  • Junichi Miwa
  • Nils Paust
  • Günter Roth
  • Roland Zengerle
  • Felix von Stetten
Brief Communication

Abstract

We demonstrate controlled transport of superparamagnetic beads in the opposite direction of a laminar flow. A permanent magnet assembles 200 nm magnetic particles into about 200 μm long bead chains that are aligned in parallel to the magnetic field lines. Due to a magnetic field gradient, the bead chains are attracted towards the wall of a microfluidic channel. A rotation of the permanent magnet results in a rotation of the bead chains in the opposite direction to the magnet. Due to friction on the surface, the bead chains roll along the channel wall, even in counter-flow direction, up to at a maximum counter-flow velocity of 8 mm s−1. Based on this approach, magnetic beads can be accurately manoeuvred within microfluidic channels. This counter-flow motion can be efficiently be used in Lab-on-a-Chip systems, e.g. for implementing washing steps in DNA purification.

Keywords

Magnetic beads Lab-on-a-chip Transport Handling 

References

  1. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865CrossRefGoogle Scholar
  2. Egatz-Gomez A, Melle S, Garcia AA, Lindsay SA, Marquez M, Dominguez-Garcia P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89(3):034106CrossRefGoogle Scholar
  3. Franke T, Schmid L, Weitz DA, Wixforth A (2009) Magneto-mechanical mixing and manipulation of picoliter volumes in vesicles. Lab Chip 9(19):2831–2835CrossRefGoogle Scholar
  4. Furlani EP, Sahoo Y, Ng KC, Wortman JC, Monk TE (2007) A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdevices 9(4):451–463CrossRefGoogle Scholar
  5. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110CrossRefGoogle Scholar
  6. Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10(2):215–221CrossRefGoogle Scholar
  7. Karle M, Miwa J, Czilwik G, Auwärter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip. doi: 10.1039/C0LC00129E
  8. Lacharme F, Vandevyver C, Gijs MAM (2008) Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Anal Chem 80(8):2905–2910CrossRefGoogle Scholar
  9. Lee SH, van Noort D, Lee JY, Zhang BT, Park TH (2009) Effective mixing in a microfluidic chip using magnetic particles. Lab Chip 9(3):479–482CrossRefGoogle Scholar
  10. Lehmann U, Vandevyver C, Parashar VK, Gijs MAM (2006) Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew Chem Int Ed 45(19):3062–3067CrossRefGoogle Scholar
  11. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182CrossRefGoogle Scholar
  12. Morimoto H, Ukai T, Nagaoka Y, Grobert N, Maekawa T (2008) Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field. Phys Rev E 78(2):021403CrossRefGoogle Scholar
  13. Ohashi T, Kuyama H, Hanafusa N, Togawa Y (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9(5):695–702CrossRefGoogle Scholar
  14. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38CrossRefGoogle Scholar
  15. Petousis I, Homburg E, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7(12):1746–1751CrossRefGoogle Scholar
  16. Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251CrossRefGoogle Scholar
  17. Sing CE, Schmid L, Schneider MF, Franke T, Alexander-Katz A (2010) Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc Natl Acad Sci USA 107(2):535–540CrossRefGoogle Scholar
  18. Terray A, Oakey J, Marr DWM (2002) Microfluidic control using colloidal devices. Science 296(5574):1841–1844CrossRefGoogle Scholar
  19. Tierno P, Golestanian R, Pagonabarraga I, Sagues F (2008) Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys Rev Lett 101(21):218–304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marc Karle
    • 1
  • Johannes Wöhrle
    • 1
  • Junichi Miwa
    • 2
  • Nils Paust
    • 1
  • Günter Roth
    • 1
    • 2
    • 3
  • Roland Zengerle
    • 1
    • 2
    • 3
  • Felix von Stetten
    • 1
    • 2
  1. 1.HSG-IMITVillingen-SchwenningenGermany
  2. 2.Department of Microsystems EngineeringLaboratory for MEMS Applications, IMTEK, University of FreiburgFreiburgGermany
  3. 3.Centre for Biological Signalling Studies (bioss)University of FreiburgFreiburgGermany

Personalised recommendations