Advertisement

Microfluidics and Nanofluidics

, Volume 10, Issue 4, pp 935–939 | Cite as

Controlled counter-flow motion of magnetic bead chains rolling along microchannels

  • Marc Karle
  • Johannes Wöhrle
  • Junichi Miwa
  • Nils Paust
  • Günter Roth
  • Roland Zengerle
  • Felix von Stetten
Brief Communication

Abstract

We demonstrate controlled transport of superparamagnetic beads in the opposite direction of a laminar flow. A permanent magnet assembles 200 nm magnetic particles into about 200 μm long bead chains that are aligned in parallel to the magnetic field lines. Due to a magnetic field gradient, the bead chains are attracted towards the wall of a microfluidic channel. A rotation of the permanent magnet results in a rotation of the bead chains in the opposite direction to the magnet. Due to friction on the surface, the bead chains roll along the channel wall, even in counter-flow direction, up to at a maximum counter-flow velocity of 8 mm s−1. Based on this approach, magnetic beads can be accurately manoeuvred within microfluidic channels. This counter-flow motion can be efficiently be used in Lab-on-a-Chip systems, e.g. for implementing washing steps in DNA purification.

Keywords

Magnetic beads Lab-on-a-chip Transport Handling 

Notes

Acknowledgments

This study is funded by the German Federal Ministry of Education and Research (16SV3528).

References

  1. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865CrossRefGoogle Scholar
  2. Egatz-Gomez A, Melle S, Garcia AA, Lindsay SA, Marquez M, Dominguez-Garcia P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89(3):034106CrossRefGoogle Scholar
  3. Franke T, Schmid L, Weitz DA, Wixforth A (2009) Magneto-mechanical mixing and manipulation of picoliter volumes in vesicles. Lab Chip 9(19):2831–2835CrossRefGoogle Scholar
  4. Furlani EP, Sahoo Y, Ng KC, Wortman JC, Monk TE (2007) A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdevices 9(4):451–463CrossRefGoogle Scholar
  5. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110CrossRefGoogle Scholar
  6. Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10(2):215–221CrossRefGoogle Scholar
  7. Karle M, Miwa J, Czilwik G, Auwärter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip. doi:  10.1039/C0LC00129E
  8. Lacharme F, Vandevyver C, Gijs MAM (2008) Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Anal Chem 80(8):2905–2910CrossRefGoogle Scholar
  9. Lee SH, van Noort D, Lee JY, Zhang BT, Park TH (2009) Effective mixing in a microfluidic chip using magnetic particles. Lab Chip 9(3):479–482CrossRefGoogle Scholar
  10. Lehmann U, Vandevyver C, Parashar VK, Gijs MAM (2006) Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew Chem Int Ed 45(19):3062–3067CrossRefGoogle Scholar
  11. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182CrossRefGoogle Scholar
  12. Morimoto H, Ukai T, Nagaoka Y, Grobert N, Maekawa T (2008) Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field. Phys Rev E 78(2):021403CrossRefGoogle Scholar
  13. Ohashi T, Kuyama H, Hanafusa N, Togawa Y (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9(5):695–702CrossRefGoogle Scholar
  14. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38CrossRefGoogle Scholar
  15. Petousis I, Homburg E, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7(12):1746–1751CrossRefGoogle Scholar
  16. Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251CrossRefGoogle Scholar
  17. Sing CE, Schmid L, Schneider MF, Franke T, Alexander-Katz A (2010) Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc Natl Acad Sci USA 107(2):535–540CrossRefGoogle Scholar
  18. Terray A, Oakey J, Marr DWM (2002) Microfluidic control using colloidal devices. Science 296(5574):1841–1844CrossRefGoogle Scholar
  19. Tierno P, Golestanian R, Pagonabarraga I, Sagues F (2008) Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys Rev Lett 101(21):218–304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marc Karle
    • 1
  • Johannes Wöhrle
    • 1
  • Junichi Miwa
    • 2
  • Nils Paust
    • 1
  • Günter Roth
    • 1
    • 2
    • 3
  • Roland Zengerle
    • 1
    • 2
    • 3
  • Felix von Stetten
    • 1
    • 2
  1. 1.HSG-IMITVillingen-SchwenningenGermany
  2. 2.Department of Microsystems EngineeringLaboratory for MEMS Applications, IMTEK, University of FreiburgFreiburgGermany
  3. 3.Centre for Biological Signalling Studies (bioss)University of FreiburgFreiburgGermany

Personalised recommendations