Microfluidics and Nanofluidics

, Volume 10, Issue 5, pp 941–964 | Cite as

Microfluidic whole-blood immunoassays

Review Paper

Abstract

Immunoassay is one of the most widely used biomedical diagnostic methods due to its sensitivity and specificity. Microfluidic lab-on-a-chip technology has the advantages of portability, integration, and automation. The combination of these two technologies leads to a pathway for point-of-care diagnostics using the unprocessed samples such as the whole blood. This article reviews the recent advancement and the major development in the microfluidic-based whole-blood immunoassays. After a survey of the recent studies on microfluidic whole-blood immunoassays, an in-depth review about the detection methods that can be miniaturized and integrated in the immunoassay chips is provided. Point-of-care diagnostics applications require developing a fully integrated, disposable, low-cost, and handheld microfluidic device for the whole-blood immunoassay. In this regard, some comments and suggestions for future research are given.

Keywords

Microfluidics Immunoassay Whole blood Optical detection Non-optical detection Lab-on-a-chip 

References

  1. Bard J, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  2. Berti F, Marrazza G et al (2009) Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection. Talanta 77:971–978Google Scholar
  3. Chediak JA, Luo Z, Seo J, Cheung N, Lee LP, Sands TD (2004) Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems. Sens Actuator A Phys 111:1–7Google Scholar
  4. Chen I-J, Lindner E (2009) Lab-on-chip flow injection analysis system without an external pump and valves and integrated with an in line electrochemical detector. Anal Chem 81:9955–9960Google Scholar
  5. Chikkaveeraiah B, Rusling J et al (2009) A microfluidic electrochemical device for high sensitivity biosensing: detection of nanomolar hydrogen peroxide. Electrochem Commun 11:819–822Google Scholar
  6. Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57Google Scholar
  7. Chinowsky TM, Grow MS, Johnston KS, Nelson K, Edwards T, Fu E, Yager P (2007a) Compact, high performance surface plasmon resonance imaging system. Biosens Bioelectron 22:2208–2215Google Scholar
  8. Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE (2007b) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22:2268–2275Google Scholar
  9. Cho JH, Han SM, Paek EH, Cho IH, Paek SH (2006) Plastic ELISA-on-a-chip based on sequential cross-flow chromatography. Anal Chem 78:793–800Google Scholar
  10. Cho Y-K, Ko C et al (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573Google Scholar
  11. Christodoulides N, Tran M, Floriano PN, Rodriguez M, Goodey A, Ali M, Neikirk D, McDevitt JT (2002) A microchip-based multianalyte assay system for the assessment of cardiac risk. Anal Chem 74(13):3030–3036Google Scholar
  12. Chumbimuni-Torres K, Bakker E et al (2006) Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. J Am Chem Soc 128:13676–13677Google Scholar
  13. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev 1:515–528Google Scholar
  14. Darain F, Tjin S et al (2009a) Antibody immobilization on to polystyrene substrate––on-chip immunoassay for horse IgG based on fluorescence. Biomed Microdevices 11:653–661Google Scholar
  15. Darain F, Tjin S et al (2009b) On-chip detection of myoglobin based on fluorescence. Biosens Bioelectron 24:1744–1750Google Scholar
  16. Dittmer WU, Martens MFWC et al (2010) Rapid, high sensitivity, point-of-care test for cardiac troponin based onoptomagnetic biosensor. Clin Chim Acta 411:868–873Google Scholar
  17. Ducrée J, Zengerle R et al (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17:S103–S115Google Scholar
  18. Ekins RP (1960) The estimation of thyroxine in human plasma by an electrophoretic technique. Clin Chim Acta 5:453–459Google Scholar
  19. Engvall E (1977) Quantitative enzyme immunoassay (ELISA) in microbiology. Med Biol 55:193–200Google Scholar
  20. Engvall E, Perlman P (1971) Enzyme-linked immunosorbent assay (ELISA): quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874Google Scholar
  21. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA): quantitative assay of immunoglobulin G. Immunochemistry 8:871–874Google Scholar
  22. Estmer Nilsson C et al (2010) A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine 28:759–766Google Scholar
  23. Fan R, Heath J et al (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26:1373–1378Google Scholar
  24. Feltis B, Sexton B, Glenn F, Best M, Wilkins M, Davis T (2008) A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron 23:1131–1136Google Scholar
  25. Frisk T, Stemme G et al (2008) An integrated QCM-based narcotics sensing microsystem. Lab Chip 8:1648–1657Google Scholar
  26. Fu E, Chinowsky T, Nelson K, Johnston K, Edwards T, Helton K, Grow M, Miller J, Yager P (2007) SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Ann N Y Acad Sci 1098:335–344Google Scholar
  27. Fung YC (1973) Stochastic flow in capillary blood vessels. Microvasc Res 5:34–48Google Scholar
  28. Gao Y, Hu G, Lin F, Li D (2005a) An electrokinetically-controlled immunoassay for simultaneous detection of multiple microbial antigens. Biomed Microdevices 7(4):301–312Google Scholar
  29. Gao Y, Lin F, Hu G, Li D (2005b) Development of a novel electrokinetically driven microfluidic immunoassay for the detection of Helicobacter pylori. Anal Chim Acta 543:109–116Google Scholar
  30. Godino N, del Campo FJ et al (2010) Construction and characterisation of a modular microfluidic system: coupling magnetic capture and electrochemical detection. Microfluid Nanofluid 8:393–402Google Scholar
  31. Grumann M, Geipel A, Riegger L, Zengerle R, Ducre′e J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5:560–565Google Scholar
  32. Hashimoto M, Kaji H, Kemppinen ME, Nishizawa M (2008) Localized immobilization of proteins onto microstructures within a preassembled microfluidic device. Sens Actuator B Chem 128(2):545–551Google Scholar
  33. Hatch AE, Kamholz KR, Hawkins MS, Munson EA, Schilling B, Weigl H, Yager P (2001) A rapid diffusion immunoassay in a T-sensor. Nat Biotechnol 19:461–465Google Scholar
  34. Hawkins KR, Yager P et al (2002) Diffusion immunoassay for protein analytes. 2nd annual international IEEE-EMBS special topic conference on microtechnologies in medicine & biology, pp 535–540Google Scholar
  35. Henares TG, Funano S-i, Terabe S, Mizutani F, Sekizawa R, Hisamoto H (2007) Multiple enzyme linked immunosorbent assay system on a capillary-assembled microchip integrating valving and immunoreactions functions. Anal Chim Acta 589(2):173–179Google Scholar
  36. Herr AE, Anup K (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. PNAS 104:5268–5273Google Scholar
  37. Herr AE, Singh AK (2007) Integrated microfluidic platform for oral diagnostics. Ann NY Acad Sci 1098:362–374Google Scholar
  38. Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, Singh AK (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci USA 104(13):5268–5273Google Scholar
  39. Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381Google Scholar
  40. Hirsch LR, Halas NJ, West JL (2005) Whole-blood immunoassay facilitated by gold nanoshell-conjugate antibodies. Methods Mol Biol 303:101–112Google Scholar
  41. Hnaiein M, Jaffrezic-Renault N et al (2008) A conductometric immunosensor based on functionalized magnetite nanoparticles for E. coli detection. Electrochem Commun 10:1152–1154Google Scholar
  42. Hofmann O, Voirin G, Niedermann P, Manz A (2002) Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces: application to immunoassays on planar optical waveguides. Anal Chem 74:5243–5250Google Scholar
  43. Hosokawa K, Omata M, Sato K, Maeda M (2006) Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 6(2):236–241Google Scholar
  44. Hosokawa K, Omata M, Maeda M (2007) Immunoassay on a power-free microchip with laminar flow-assisted dendritic amplification. Anal Chem 79:6000–6004Google Scholar
  45. Hu G, Gao Y, Sherman P, Li D (2005) A microfluidic chip for heterogeneous immunoassay using electrokinetical control. Microfluid Nanofluid 1:346–355Google Scholar
  46. Hu G, Gao Y, Li D (2007) Modeling micropatterned antigen–antibody binding kinetics in a microfluidic chip. Biosens Bioelectron 22:1403–1409Google Scholar
  47. Huang H, Pu X et al (2009) Rapid analysis of alpha-fetoprotein by chemiluminescence microfluidic immunoassay system based on super-paramagnetic microbeads. Biomed Microdevices 11:213–216Google Scholar
  48. Huckle D (2006) Point-of-care diagnostics: will the hurdles be overcome this time? Expert Rev Med Device 3:421–426Google Scholar
  49. Huckle D (2008) Point-of-care diagnostics: an advancing sector with nontechnical issues. Expert Rev Mol Diagn 8:679–688Google Scholar
  50. Ihara M, Ueda H et al (2010) Micro OS-ELISA: rapid noncompetitive detection of a small biomarker peptide by open-sandwich enzyme-linked immunosorbent assay (OS-ELISA) integrated into microfluidic device. Lab Chip 10:92–100Google Scholar
  51. Järås K, Tajudin AA, Ressine A, Soukka T, Marko-Varga G, Bjartell A, Malm J, Laurell T, Lilja H (2008) ENSAM: europium nanoparticles for signal enhancement of antibody microarrays on nanoporous silicon. J Proteome Res 7:1308–1314Google Scholar
  52. Kagebayashi C, Yamaguchi I, Akinaga A, Kitano H, Yokoyama K, Satomura M, Kurosawa T, Watanabe M, Kawabata T, Chang W, Li C, Bousse L, Wada HG, Satomura S (2009) Automated immunoassay system for AFP-L3% using on-chip electrokinetic reaction and separation by affinity electrophoresis. Anal Biochem 388(2):306–311Google Scholar
  53. Kakehi K, Oda Y et al (2001) Fluorescence polarization: analysis of carbohydrate–protein interaction. Anal Biochem 297(2):111–116Google Scholar
  54. Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17:151–161Google Scholar
  55. Kim N, Kim D-K, Cho Y-J (2009) Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein. Sens Actuator B 143:444–448Google Scholar
  56. Kitamori T, Tokeshi M, Hibara A, Sato K (2004) Peer reviewed: thermal lens microscopy and microchip chemistry. Anal Chem 76(3):52A–60AGoogle Scholar
  57. Kong J, Lin B et al (2009) Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip 9:1541–1547Google Scholar
  58. Kretschmann E (1971) The determination of the optical constants of metals by excitation of surface plasmons. Z Phys 241:313Google Scholar
  59. Krishnamoorthy G, Carlen ET, Kohlheyer D, Schasfoort RBM, van den Berg A (2009) Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions. Anal Chem 81:1957–1963Google Scholar
  60. Krishnamoorthy G et al (2010) Electrokinetic lab-on-a-biochip for multi-ligand/multi-analyte biosensing. Anal Chem 82:4145–4150Google Scholar
  61. Kuei-Ling S, Lin Y-C, Chen W-T et al (2009) An immunoassay using an electro-microchip, nanogold probe and silver enhancement. Microfluid Nanofluid 6:93–98Google Scholar
  62. Laiwattanapaisal W, Songjaroen T, Maturos T, Lomas T, Sappat A, Tuantranont A (2009) On-chip immunoassay for determination of urinary albumin. Sensors 9:10066–10079Google Scholar
  63. Lee K-H, Yuan-Deng S, Chen S-J, Tseng F-G, Lee G-B (2007) Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron 23(4):466–472Google Scholar
  64. Lee B, Ko C et al (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555Google Scholar
  65. Lenshof A, Laurell T et al (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037Google Scholar
  66. Liang K-Z, Liu Z-X et al (2009) Conductometric immunoassay for interleukin-6 in human serum based on organic/inorganic hybrid membrane functionalized interface. Bioprocess Biosyst Eng 32:353–359Google Scholar
  67. Lim T-K, Ohta H, Matsunaga T (2003) Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal Chem 75:3316–3321Google Scholar
  68. Liu C, DafuCui H (2010) A hard–soft microfluidic-based biosensor flow cell for SPR imaging application. Biosens Bioelectron 26(1):255–261Google Scholar
  69. Liu C-Yu, Lee G-B et al (2009a) Integrated microfluidic system for electrochemical sensing of urinary proteins. Biomed Microdevices 11:201–211Google Scholar
  70. Liu H, Zhong Z et al (2009b) Enhanced conductometric immunoassay for hepatitis B surface antigen using double-codified nanogold particles as labels. Biochem Eng J 45:107–112Google Scholar
  71. Ljungstrom I, Engvall E, Ruitenberg EJ (1974) Proceedings: ELISA, enzyme-linked immunosorbent assay—a new technique for serodiagnosis of trichinosis. Parasitology 69:xxivGoogle Scholar
  72. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors—principles and applications to clinical chemistry. Clin Chim Acta 314:1–26Google Scholar
  73. Meagher RJ, Hatch AV, Renzi RF, Singh AK (2008) An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8(12):2046–2053Google Scholar
  74. Mecea VM (2005) From quartz crystal microbalance to fundamental principles of mass measurements. Anal Lett 38:753–767Google Scholar
  75. Michalzik M, Wilke R, Buttgenbach S (2005) Miniaturized QCM-based flow system for immunosensor application in liquid. Sens Actuator B Chem 111–112(11):410–415Google Scholar
  76. Miles LEM, Hales CN (1968) Labelled antibodies and immunological assay systems. Nature 219:186–189Google Scholar
  77. Moorthy J, Mensing GA, Kim D, Mohanty S, Eddington DT, Tepp WH, Johnson EA, Beebe DJ (2004) Microfluidic tectonics platform: a colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay system. Electrophoresis 25:1705Google Scholar
  78. Morozov VN, Groves S, Turell MJ, Bailey C (2007) Three minutes-long electrophoretically assisted zeptomolar microfluidic immunoassay with magnetic-beads detection. J Am Chem Soc 129:12628–12629Google Scholar
  79. Muhammad-Tahir Z, Alocilja E (2003) A conductometric biosensor for biosecurity. Biosens Bioelectron 18:813–819Google Scholar
  80. Mullett WM, Lai EPC, Yeung JM (2000) Surface plasmon resonance-based immunoassays. Methods 22:77–91Google Scholar
  81. Nobel Prize home page. http://nobelprize.org/nobel_prizes/medicine/laureates/1977/. Accessed June 2005
  82. Pais A, Banerjee A, Klotzkin D, Papautsky I (2008) High-sensitivity, disposable lab on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip 8:794–800Google Scholar
  83. Park SW, Yang SS et al (2009) An electrochemical immunosensing lab-on-a-chip integrated with latch mechanism for hand operation. J Micromech Microeng 19:025024Google Scholar
  84. Parsa H, Chin CD, Mongkolwisetwara P, Lee BW, Wang JJ, Sia SK (2008) Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 8:2062–2070Google Scholar
  85. Pereira SV et al (2010a) Integrated microfluidic magnetic immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori. J Chromatogr B Anal Technol Biomed Life Sci 878(2):253–257Google Scholar
  86. Pereira S, Raba J, Messina G (2010b) IgG anti-gliadin determination with an immunological microfluidic system applied to the automated diagnostic of the celiac disease. Anal Bioanal Chem 396:2921–2927Google Scholar
  87. Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA (2006) Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis 42:377–382Google Scholar
  88. Pugia M, Schulman L et al (2005) Microfluidic tool box as technology platform for hand-held diagnostics. Clin Chem 51(10):1923–1932Google Scholar
  89. Qin L, Vermesh O, Shi Q, Heath J (2009) Self-powered microfluidic chips for multiplexed protein assays from whole blood. Lab Chip 9:2016–2020Google Scholar
  90. Qiu X, Thompson JA, Chen Z et al (2009) Finger-actuated, self-contained immunoassay cassettes. Biomed Microdevices 11(6):1175–1186Google Scholar
  91. Rabe J, Buttgenbach S, Zimmermann B, Hauptmann P (2000) Design, manufacturing, and characterization of high-frequency thicknessshear mode resonators. In: Proceedings of the IEEE/EIA international frequency control symposium, pp 106–112Google Scholar
  92. Reichmuth DS, Wang SK, Barrett LM, Throckmorton DJ, Einfeld W, Singha AK (2008) Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip 8(8):1319–1324Google Scholar
  93. Riegger L, Ducr′ee J et al (2006) Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sens Actuator A 126:455–462Google Scholar
  94. Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T (2000) Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal Chem 72(6):1144–1147Google Scholar
  95. Sato K, Tokeshi M, Kimura H, Kitamori T (2001) Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoasay in a microchip for cancer diagnosis. Anal Chem 73(6):1213–1218Google Scholar
  96. Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis 23(5):734–739Google Scholar
  97. Schmid-Schonbein GW, Skalak R, Usami S, Chien S (1980) Cell distribution in capillary networks. Microvasc Res 19:18–44Google Scholar
  98. Schmidt O, Bassler M, Kiesel P, Knollenberg C, Johnson N (2007) Fluorescence spectrometer-on-a-fluidic-chip. Lab Chip 7:626–629Google Scholar
  99. Schuurs AHWM, van Weemen BK (1980) Enzyme-immunoassay: a powerful analytical tool. J Immunoassay 1:229–249Google Scholar
  100. Seo J, Lee LP (2003) Fluorescence amplification by self-aligned integrated microfluidic optical systems. IEEE transducers 2003, solid-state sensors, actuators and microsystems, pp 1136–1139Google Scholar
  101. Seo J, Lee LP (2004) Disposable integrated microfluidics with self-aligned planar microlenses. Sens Actuator B Chem 99:615–622Google Scholar
  102. Shankaran D, Miura N (2007) Trends in interfacial design for surface plasmon resonance based immunoassays. J Phys D Appl Phys 40:7187–7200Google Scholar
  103. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuator B 12:158–177Google Scholar
  104. Singer PA, Taylor AD, Daar AS, Upshur RE, Singh JA, Lavery JV (2007) Grand challenges in global health: the ethical, social and cultural program. PLoS Med 4(9):e265Google Scholar
  105. Steigert J, Ducr′ee J et al (2005) Integrated sample preparation, reaction, and detection on a high-frequency centrifugal microfluidic platform. JALA 10(5):331–341Google Scholar
  106. Steigert J, Ducr′ee J et al (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044Google Scholar
  107. Stern E, Fahmy T et al (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142Google Scholar
  108. Stevens DY, Petri CR, Osborn JL, Spicar-Mihalic P, McKenzie KG, Yager P (2008) Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8:2038–2045Google Scholar
  109. Tachi T, Baba Y et al (2009) Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy. Lab Chip 9:966–971Google Scholar
  110. Thorslund S, Bergquist J (2006) A hybrid poly (dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed Microdevices 8:73–79Google Scholar
  111. Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T (2001) Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination. Anal Chem 73(9):2112–2116Google Scholar
  112. Uchiyama K et al (2000) Thermal lens microscope. Jpn J Appl Phys 39:5316–5322Google Scholar
  113. Uludag Y, Tothill I (2010) Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system. Talanta 82:277–282Google Scholar
  114. Uotila M, Ruoslathi E, Envall E (1981) Two-site sandwich enzyme immunoassay with monoclonal antibodies to human alphafetoprotein. J Immunol Methods 42:11–15Google Scholar
  115. Van Weeman BK, Schuurs A (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15(3):232–236Google Scholar
  116. Van Weemen BK, Schuurs AHWM (1971) Immunoassay using antigenenzyme conjugates. FEBS Lett 15:232–236Google Scholar
  117. Varshney M, Tung S et al (2007) A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sens Actuator B 128:99–107Google Scholar
  118. Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3(4):60N–68NGoogle Scholar
  119. Wang X, Donal D, Bradley C et al (2007) Integrated thin-film polymer/fullerene photodetectors for on-chipmicrofluidic chemiluminescence detection. Lab Chip 7:58–63Google Scholar
  120. Wang H, Liu B et al (2008) Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip. Electrochem Commun 10:447–450Google Scholar
  121. Wang X, de Mello AJ et al (2009) Thin-film organic photodiodes for integrated on-chip chemiluminescencedetection––application to antioxidant capacity screening. Sens Actuator B 140:643–648Google Scholar
  122. Wang H, Liu B et al (2010) Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochem Commun 12:258–261Google Scholar
  123. Weigl BH, Yager P (1999) Microfluidic diffusion-based separation and detection. Science 283:346–347Google Scholar
  124. Weigl BH, Bardell RL, Cabrera CR (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377Google Scholar
  125. Wild D (2008) The immunoassay handbook. 3rd edn. Elsevier, OxfordGoogle Scholar
  126. Wolf M, Juncker D et al (2004) Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens Bioelectron 19(10):1193–1202Google Scholar
  127. Xiang Q, Hu G, Gao Y, Li D (2006) Miniaturized immunoassay microfluidic system with electrokinetic control. Biosens Bioelectron 21:2006–2009Google Scholar
  128. Yacoub-George E, Hell W, Meixner L, Wenninger F, Bock K, Lindner P, Wolf H, Kloth T, Feller KA (2007) Automated 10-channel capillary chip immunodetector for biological agents detection. Biosens Bioelectron 22:1368–1375Google Scholar
  129. Yadavalli VK, Pishko MV (2004) Biosensing in microfluidic channels using fluorescence polarization. Anal Chim Acta 507(1):123–128Google Scholar
  130. Yager P, Edwards T, Fu E, Helton K, Nelson K et al (2006) Microfluidic diagnostic technologies for global public health. Nat Insight 442:412–418Google Scholar
  131. Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. Clin Invest 39(7):1157–1175Google Scholar
  132. Yang S, Ji B, Ündar A, Zahn J (2006a) Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures. ASAIO J 52:698–704Google Scholar
  133. Yang S, Undar A, Zahn JD (2006b) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880Google Scholar
  134. Yang S, Undar A, Zahn J (2007) Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms. Lab Chip 7:588–595Google Scholar
  135. Yang S-Y, Lee G-B et al (2008) Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection. Biosens Bioelectron 24:855–862Google Scholar
  136. Yang Y-N, Lee G-B et al (2009) An integrated microfluidic system for C-reactive protein measurement. Biosens Bioelectron 24:3091–3096Google Scholar
  137. Yeh C-H, Lin Y-C et al (2009) Development of an immunoassay based on impedance measurements utilizing an antibody-nanosilver probe, silver enhancement, and electro-microchip. Sens Actuator B 139:387–393Google Scholar
  138. Yen RT, Fung YC (1978) Effect of velocity distribution on red cell distribution in capillary blood vessels. Am J Physiol 235(2):H251–H257Google Scholar
  139. Yoo S, Lee S-H et al (2009) Microfluidic chip-based electrochemical immunoassay for hippuric acid. Analyst 134:2462–2467Google Scholar
  140. Zhang S, Su M et al (2009) MCE enzyme immunoassay for carcinoembryonic antigen and alphafetoprotein using electrochemical detection. Electrophoresis 30:3427–3435Google Scholar
  141. Zimmermann M, Delamarche E, Wolf M, Hunziker P (2005) Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays. Biomed Microdevices 7:99–110Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations