Microfluidics and Nanofluidics

, Volume 10, Issue 4, pp 749–759 | Cite as

Chaotic mixing using source–sink microfluidic flows in a PDMS chip

  • H. Cumhur Tekin
  • Venkataragavalu Sivagnanam
  • A. Tuna Ciftlik
  • Abdeljalil Sayah
  • Caroline Vandevyver
  • Martin A. M. Gijs
Research Paper


We present an active fixed-volume mixer based on the creation of multiple source–sink microfluidic flows in a polydimethylsiloxane (PDMS) chip without the need of external or internal pumps. To do so, four different pressure-controlled actuation chambers are arranged on top of the 5 μl volume of the mixing chamber. After the mixing volume is sealed/fixed by microfluidic valves made using ‘microplumbing technology’, a virtual source–sink pair is created by pressurizing one of the membranes and, at the same time, releasing the pressure of a neighboring one. The pressurized air deforms the thin membrane between the mixing and control chambers and creates microfluidic flows from the squeezed region (source) to the released region (sink) where the PDMS membrane is turned into the initial state. Several schemes of operation of virtual source–sink pairs are studied. In the optimized protocol, mixing is realized in just a sub-second time interval, thanks to the implementation of chaotic advection.


Fixed-volume mixer Valve Chaotic advection Source–sink flow PDMS Microfluidics 



We would like to thank Meng Shen of the Laboratory of Microsystems of EPFL (Switzerland) and Dr. Bo Song of the Laboratory of Lanthanide Supramolecular Chemistry of EPFL for helpful discussions and suggestions, Di Jiang of the Laboratory of Microsystems of EPFL (Switzerland) for solving programming issues on the FPGA board and the staff of the EPFL Center of MicroNano Technology (CMI) for assistance in the chip fabrication issues.

Supplementary material

10404_2010_706_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1641 kb)

Supplementary material 2 (MPG 7414 kb)


  1. Agarwal AK, Sridharamurthy SS, Beebe DJ, Jiang HR (2005) Programmable autonomous micromixers and micropumps. J Microelectromech Syst 14(6):1409–1421. doi:10.1109/Jmems.2005.859101 CrossRefGoogle Scholar
  2. Aref H (1984) Stirring by chaotic advection. J Fluid Mech 143(June):1–21Google Scholar
  3. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590CrossRefGoogle Scholar
  4. Beuf A, Gence JN, Carriere P, Raynal F (2010) Chaotic mixing efficiency in different geometries of hele-shaw cells. Int J Heat Mass Transf 53(4):684–693. doi:10.1016/j.ijheatmasstransfer.2009.10.024 MATHCrossRefGoogle Scholar
  5. Chang ST, Beaumont E, Petsev DN, Velev OD (2008) Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Lab Chip 8(1):117–124. doi:10.1039/B712108c CrossRefGoogle Scholar
  6. Chen JK, Ko FH, Chan CH, Huang CF, Chang FC (2006) Using imprinting technology to fabricate three-dimensional devices from moulds of thermosetting polymer patterns. Semicond Sci Technol 21(9):1213–1220. doi:10.1088/0268-1242/21/9/001 CrossRefGoogle Scholar
  7. Chou H-P, Unger MA, Quake SR (2001) A microfabricated rotary pump. Biomed Microdevices 3(4):323–330CrossRefGoogle Scholar
  8. Cieslicki K, Piechna A (2009) Investigations of mixing process in microfluidic manifold designed according to biomimetic rule. Lab Chip 9(5):726–732. doi:10.1039/B811005k CrossRefGoogle Scholar
  9. Claux B, Vittori O (2007) Bismuth film electrode as an alternative for mercury electrodes: determination of azo dyes and application for detection in food stuffs. Electroanalysis 19(21):2243–2246. doi:10.1002/elan.200703978 CrossRefGoogle Scholar
  10. Cola BA, Schaffer DK, Fisher TS, Stremler MA (2006) A pulsed source–sink fluid mixing device. J Microelectromech Syst 15(1):259–266. doi:10.1109/Jmems.2005.863786 CrossRefGoogle Scholar
  11. deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442(7101):394–402. doi:10.1038/Nature05062 CrossRefGoogle Scholar
  12. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984CrossRefGoogle Scholar
  13. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal pdms-pdms bonding technique for microfluidic devices. J Micromech Microeng 18(6). doi:10.1088/0960-1317/18/6/067001
  14. Evans J, Liepmann D, Pisano AP (1997) Planar laminar mixer. Proc IEEE MEMS Workshop, pp 96–101Google Scholar
  15. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563. doi:10.1021/Cr9001929 CrossRefGoogle Scholar
  16. Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565. doi:10.1039/B418253g CrossRefGoogle Scholar
  17. Hardy BS, Uechi K, Zhen J, Kavehpour HP (2009) The deformation of flexible pdms microchannels under a pressure driven flow. Lab Chip 9(7):935–938. doi:10.1039/B813061b CrossRefGoogle Scholar
  18. Harnett CK, Templeton J, Dunphy-Guzman KA, Senousy YM, Kanouff MP (2008) Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip 8(4):565–572. doi:10.1039/B717416k CrossRefGoogle Scholar
  19. Herrmann M, Roy E, Veres T, Tabrizian M (2007) Microfluidic elisa on non-passivated pdms chip using magnetic bead transfer inside dual networks of channels. Lab Chip 7(11):1546–1552. doi:10.1039/B707883h CrossRefGoogle Scholar
  20. Hertzsch JM, Sturman R, Wiggins S (2007) DNA microarrays: design principles for maximizing ergodic, chaotic mixing. Small 3(2):202–218. doi:10.1002/smll.200600361 CrossRefGoogle Scholar
  21. Hong JW, Studer V, Hang G, Anderson WF, Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22(4):435–439. doi:10.1038/Nbt951 CrossRefGoogle Scholar
  22. Jang LS, Chao SH, Holl MR, Meldrum DR (2007) Resonant mode-hopping micromixing. Sens Actuators A 138(1):179–186. doi:10.1016/j.sna.2007.04.052 CrossRefGoogle Scholar
  23. Jones SW (1991) The enhancement of mixing by chaotic advection. Phys Fluids A 3(5):1081–1086CrossRefGoogle Scholar
  24. Jones SW, Aref H (1988) Chaotic advection in pulsed-source sink systems. Phys Fluids 31(3):469–485MathSciNetCrossRefGoogle Scholar
  25. Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the t-sensor. Anal Chem 71(23):5340–5347CrossRefGoogle Scholar
  26. Kartalov EP, Walker C, Taylor CR, Anderson WF, Scherer A (2006) Microfluidic vias enable nested bioarrays and autoregulatory devices in newtonian fluids. Proc Natl Acad Sci USA 103(33):12280–12284. doi:10.1073/pnas.0602890103 CrossRefGoogle Scholar
  27. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866CrossRefGoogle Scholar
  28. Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) Su-8: a low-cost negative resist for mems. J Micromech Microeng 7(3):121–124CrossRefGoogle Scholar
  29. Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469. doi:10.1109/Jmems.2002.802899 CrossRefGoogle Scholar
  30. Mao XL, Juluri BK, Lapsley MI, Stratton ZS, Huang TJ (2010) Milliseconds microfluidic chaotic bubble mixer. Microfluid Nanofluidics 8(1):139–144. doi:10.1007/s10404-009-0496-4 CrossRefGoogle Scholar
  31. McQuain MK, Seale K, Peek J, Fisher TS, Levy S, Stremler MA, Haselton FR (2004) Chaotic mixer improves microarray hybridization. Anal Biochem 325(2):215–226. doi:10.1016/J.Ab.2003.10.032 CrossRefGoogle Scholar
  32. Metref L, Herrera F, Berdat D, Gijs MAM (2007) Contactless electrochemical actuator for microfluidic dosing. J Microelectromech Syst 16(4):885–892. doi:10.1109/Jmems.2007.892893 CrossRefGoogle Scholar
  33. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi:10.1038/Nature06385 CrossRefGoogle Scholar
  34. Nguyen NT, Wu ZG (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16. doi:10.1088/0960-1317/15/2/R01 CrossRefGoogle Scholar
  35. Orhan JB, Parashar VK, Flueckiger J, Gijs MAM (2008) Internal modification of poly(dimethylsiloxane) microchannels with a borosilicate glass coating. Langmuir 24(16):9154–9161. doi:10.1021/La801317x CrossRefGoogle Scholar
  36. Ottino JM, Wiggins S (2004) Introduction: mixing in microfluidics. Philos Trans R Soc Lond A 362(1818):923–935. doi:10.1098/rsta.2003.1355 MathSciNetMATHCrossRefGoogle Scholar
  37. Raynal F, Plaza F, Beuf A, Carriere P, Souteyrand E, Martin JR, Cloarec JP, Cabrera M (2004) Study of a chaotic mixing system for DNA chip hybridization chambers. Phys Fluids 16(9):L63–L66. doi:10.1063/1.1775807 CrossRefGoogle Scholar
  38. Rida A, Gijs MAM (2004) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal Chem 76(21):6239–6246. doi:10.1021/Ac049415j CrossRefGoogle Scholar
  39. Rife JC, Bell MI, Horwitz JS, Kabler MN, Auyeung RCY, Kim WJ (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators A 86(1–2):135–140Google Scholar
  40. Sivagnanam V, Song B, Vandevyver C, Gijs MAM (2009) On-chip immunoassay using electrostatic assembly of streptavidin-coated bead micropatterns. Anal Chem 81(15):6509–6515. doi:10.1021/Ac9009319 CrossRefGoogle Scholar
  41. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026CrossRefGoogle Scholar
  42. Stremler MA, Haselton FR, Aref H (2004) Designing for chaos: applications of chaotic advection at the microscale. Philos Trans R Soc Lond A 362(1818):1019–1036. doi:10.1098/rsta.2003.1360 MathSciNetCrossRefGoogle Scholar
  43. Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651CrossRefGoogle Scholar
  44. Studer V, Hang G, Pandolfi A, Ortiz M, Anderson WF, Quake SR (2004) Scaling properties of a low-actuation pressure microfluidic valve. J Appl Phys 95(1):393–398. doi:10.1063/1.1629781 CrossRefGoogle Scholar
  45. Sturman R, Wiggins S (2009) Eulerian indicators for predicting and optimizing mixing quality. New J Phys 11. doi:10.1088/1367-2630/11/7/075031
  46. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116CrossRefGoogle Scholar
  47. Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6(1):96–104. doi:10.1039/B510127a CrossRefGoogle Scholar
  48. Xia HM, Wan SYM, Shu C, Chew YT (2005) Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab Chip 5(7):748–755. doi:10.1039/B502031j CrossRefGoogle Scholar
  49. Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A 93(3):266–272CrossRefGoogle Scholar
  50. Yuen PK, Li GS, Bao YJ, Muller UR (2003) Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip 3(1):46–50. doi:10.1039/B210274a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • H. Cumhur Tekin
    • 1
  • Venkataragavalu Sivagnanam
    • 1
  • A. Tuna Ciftlik
    • 1
  • Abdeljalil Sayah
    • 1
  • Caroline Vandevyver
    • 2
  • Martin A. M. Gijs
    • 1
  1. 1.Laboratory of Microsystems, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Research Commission SNF, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations