Microfluidics and Nanofluidics

, Volume 10, Issue 3, pp 697–702 | Cite as

On-chip PCR amplification of genomic and viral templates in unprocessed whole blood

  • Dammika P. Manage
  • Yuen C. Morrissey
  • Alexander J. Stickel
  • Jana Lauzon
  • Alexey Atrazhev
  • Jason P. Acker
  • Linda M. Pilarski
Short Communication

Abstract

Performing medical diagnosis in microfluidic devices could scale down laboratory functions and reduce the cost for accessible healthcare. The ultimate goal of such devices is to receive a sample of blood, perform genetic amplification (polymerase chain reaction—PCR) and subsequently analyse the amplified products. DNA amplification is generally performed with DNA purified from blood, thus requiring on-chip implementation of DNA extraction steps with consequent increases in the complexity and cost of chip fabrication. Here, we demonstrate the use of unprocessed whole blood as a source of template for genomic or viral targets (human platelet antigen 1 (HPA1), fibroblast growth factor receptor 2 (FGFR2) and BK virus (BKV)) amplified by PCR on a three-layer microfluidic chip that uses a flexible membrane for pumping and valving. The method depends upon the use of a modified DNA polymerase (Phusion™). The volume of the whole blood used in microchip PCR chamber is 30 nl containing less than 1 ng of genomic DNA. For BKV on-chip whole blood PCR, about 3000 copies of BKV DNA were present in the chamber. The DNA detection method, laser-induced fluorescence, used in this article so far is not quantitative but rather qualitative providing a yes/no answer. The ability to perform clinical testing using whole blood, thereby eliminating the need for DNA extraction or sample preparation prior to PCR, will facilitate the development of microfluidic devices for inexpensive and faster clinical diagnostics.

Keywords

On-chip PCR Microfluidics Whole blood PCR Phusion Taq 

References

  1. ABI (2009) DNA sequencing by capillary electrophoresis. Applied Biosystems Chemistry GuideGoogle Scholar
  2. Adamia S, Reichert AA, Kuppusamy H, Kriangkum J, Ghosh A, Hodges JJ, Pilarski PM, Treon SP, Mant MJ, Reiman T, Belch AR, Pilarski LM (2008) Inherited and acquired variations in the hyaluronan synthase 1 (HAS1) gene may contribute to disease progression in multiple myeloma and Waldenstrom macroglobulinemia. Blood 112:5111–5121CrossRefGoogle Scholar
  3. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic-acid (DNA) from bloodstains, a major inhibitor of polymerase chain-reaction (PCR) amplification. J Forensic Sci 39:362–372Google Scholar
  4. Bu Y, Huang H, Zhou G (2008) Direct polymerase chain reaction (PCR) from human whole blood and filter-paper-dried blood by using a PCR buffer with a higher pH. Anal Biochem 375:370–372CrossRefGoogle Scholar
  5. Chen L, Manz A, Day PJR (2007) Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7:1413–1423CrossRefGoogle Scholar
  6. Chia BT, Yang XY, Cheng MY, Yang YJ (2010) A DNA extraction and polymerase-chain-reaction microchip using magnetic beads and thermo-pneumatic valves. Mems 2010: 23rd IEEE international conference on micro electro mechanical systems, Technical Digest, pp 967–970Google Scholar
  7. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci USA 103:19272–19277CrossRefGoogle Scholar
  8. Eisenstein BI (1990) The polymerase chain-reaction—a new method of using molecular-genetics for medical diagnosis. N Engl J Med 322:178–183CrossRefGoogle Scholar
  9. Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuators B Chem 89:315–323CrossRefGoogle Scholar
  10. Higuchi R (1989) PCR technology: principles and applications for DNA amplification. Stockton Press, New YorkGoogle Scholar
  11. House DL, Chon CH, Creech CB, Skaar EP, Li DQ (2010) Miniature on-chip detection of unpurified methicillin-resistant Staphylococcus aureus (MRSA) DNA using real-time PCR. J Biotechnol 146:93–99CrossRefGoogle Scholar
  12. Kaigala GV, Huskins RJ, Preiksaitis J, Pang XL, Pilarski LM, Backhouse CJ (2006) Automated screening using microfluidic chip-based PCR and product detection to assess risk of BK virus-associated nephropathy in renal transplant recipients. Electrophoresis 27:3753–3763CrossRefGoogle Scholar
  13. Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM (2009) Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res 37:e40CrossRefGoogle Scholar
  14. Lien KY, Liu CJ, Lin YC, Kuo PL, Lee GB (2009) Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform. Microfluid Nanofluidics 6:539–555CrossRefGoogle Scholar
  15. Liu CN, Toriello NM, Mathies RA (2006) Multichannel PCR-CE microdevice for genetic analysis. Anal Chem 78:5474–5479CrossRefGoogle Scholar
  16. Manage DP, Zheng Y, Somerville MJ, Backhouse CJ (2005) On-chip HA/SSCP for the detection of hereditary haemochromatosis. Microfluid Nanofluidics 1:364–372CrossRefGoogle Scholar
  17. McCusker J, Dawson MT, Noone D, Gannon F, Smith T (1992) Improved method for direct PCR amplification from whole-blood. Nucleic Acids Res 20:6747CrossRefGoogle Scholar
  18. Nishimura N, Nakayama T, Tonoike H, Kojima K, Kato S (2000) Direct polymerase chain reaction from whole blood without DNA isolation. Ann Clin Biochem 37:674–680CrossRefGoogle Scholar
  19. Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 15:772–777CrossRefGoogle Scholar
  20. Price CW, Leslie DC, Landers JP (2009) Nucleic acid extraction techniques and application to the microchip. Lab Chip 9:2484–2494CrossRefGoogle Scholar
  21. Wang F, Burns MA (2009) Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed Microdevices 11:1071–1080CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dammika P. Manage
    • 1
  • Yuen C. Morrissey
    • 1
  • Alexander J. Stickel
    • 1
  • Jana Lauzon
    • 1
  • Alexey Atrazhev
    • 1
  • Jason P. Acker
    • 2
    • 3
  • Linda M. Pilarski
    • 1
    • 2
  1. 1.Department of OncologyUniversity of Alberta and Cross Cancer InstituteEdmontonCanada
  2. 2.Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
  3. 3.Research and Development, Canadian Blood ServicesEdmontonCanada

Personalised recommendations