Advertisement

Microfluidics and Nanofluidics

, Volume 10, Issue 3, pp 543–550 | Cite as

Particle transport in flow through a ratchet-like channel

  • Roberto L. C. CisneJr.
  • Talita F. Vasconcelos
  • Eric J. R. Parteli
  • José S. AndradeJr.Email author
Research Paper

Abstract

We present a fluidic device that shows ratchet-like characteristics for particle transport at low Reynolds. The ratchet consists of a two-dimensional saw-tooth channel, within which a laminar flow is generated by imposing a longitudinal pressure gradient. Particle trajectories are calculated by solving the continuity and Navier–Stokes equations for the fluid flow and the equations for particle transport in both flow directions. The ratchet-like effect is connected with a large asymmetry in the mean transit time, with regard to flow direction, due to particle motion within zones of low flow velocity near the asymmetric wall profile. We show how to obtain ratchet of particles with select Stokes under given flow conditions by adjusting the geometry of the ratchet channel.

Keywords

Particles in fluids Particle transport Channel flow Ratchet effect 

Notes

Acknowledgments

We acknowledge Antônio J. C. Sampaio for discussions and helpful comments. We also thank Josué Mendes Filho for stimulating remarks. This research was supported by CAPES, CNPq, FUNCAP and FINEP (Brazilian agencies), and CNPq/FUNCAP Pronex grant.

References

  1. Adjari A (2002) Electrokinetic ‘ratchet’ pumps for microfluidics. Appl Phys A 75:271–274CrossRefGoogle Scholar
  2. Almeida MP, Andrade JS Jr, Herrmann HJ (2006) Aeolian transport layer. Phys Rev Lett 96:018001CrossRefGoogle Scholar
  3. Almeida MP, Parteli EJR, Andrade JS Jr, Herrmann HJ (2008) Giant saltation on Mars. Proc Natl Acad Sci 105:6222–6226CrossRefGoogle Scholar
  4. Araújo AD, Andrade JS Jr, Herrmann HJ (2006) Critical role of gravity in filters. Phys Rev Lett 97:138001CrossRefGoogle Scholar
  5. Austin RH, Darnton N, Huang R, Sturm J, Bakajin O, Duke T (2002) Ratchets: the problems with boundary conditions in insulating fluids. Appl Phys A 75:279–284CrossRefGoogle Scholar
  6. Bader JS, Hammond RW, Henck SA, Deem MW, McDermott GA, Bustillo JM, Simpson JW, Mulhern GT, Rothbert JM (1999) DNA transport by a micromachined Brownian ratchet device. Proc Natl Acad Sci 96:13165–13169CrossRefGoogle Scholar
  7. Buguin A, Talini L, Silberzan P (2002) Ratchet-like topological structures for the control of microdrops. Appl Phys A 75:207–212CrossRefGoogle Scholar
  8. Comer JK, Kleinstreuer C, Kim CS (2001a) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J Fluid Mech 435:25–54Google Scholar
  9. Comer JK, Kleinstreuer C, Kim CS (2001b) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J Fluid Mech 435:25–54Google Scholar
  10. Dean Astumian R (1997) Thermodynamics and Kinetics of a Brownian motor. Science 276:917:922CrossRefGoogle Scholar
  11. Derényi I, Dean Astumian R (1998) ac separation of particles by biased Brownian motion in a two-dimensional sieve. Phys Rev E 58:7781–7784CrossRefGoogle Scholar
  12. Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211CrossRefGoogle Scholar
  13. Effenhauser CS, Manz A, Michael Widmer H (1995) Manipulation of sample fractions on a capillary electrophoresis chip. Anal Chem 67:2284–2287CrossRefGoogle Scholar
  14. Ertaş D (1998) Lateral separation of macromolecules and polyelectrolytes in microlithographiic arrays. Phys Rev Lett 80:1548–1551CrossRefGoogle Scholar
  15. Faucheux LP, Bourdieu LS, Kaplan PD, Libchaber AJ (1995) Optical thermal ratchet. Phys Rev Lett 74:1504–1507CrossRefGoogle Scholar
  16. Gorre-Talini S, Jeanjean S, Silberzan P (1997) Sorting of Brownian particles by the pulsed application of an asymmetric potential. Phys Rev E 56:2025–2034CrossRefGoogle Scholar
  17. Grimm A, Stark H, van Maarel JRC (2009) Model for a Brownian ratchet with improved characteristics for particle separation. Phys Rev E 79:061102CrossRefGoogle Scholar
  18. Herrmann HJ, Andrade JS Jr, Araújo AD, Almeida MP (2006) Transport of particles in fluids. Phys A 372:374–386CrossRefGoogle Scholar
  19. Huang LR, Silberzan P, Tegenfeldt JO, Cox EC, Sturm JC, Austin RH, Craighead H (2002) Role of molecular size in ratchet fractionation. Phys Rev Lett 89:178301CrossRefGoogle Scholar
  20. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987-990CrossRefGoogle Scholar
  21. Imdakm AO, Sahimi M (1987) Transport of large particles in flow through porous media. Phys Rev A 36:5304–5309CrossRefGoogle Scholar
  22. Keller C, Marquardt F, Bruder C (2002) Separation quality of a geometric ratchet. Phys Rev E 65:041927CrossRefGoogle Scholar
  23. Kettner C, Reimann P, Hänggi P, Müller F (2000) Drift ratchet. Phys Rev E 61:312–323CrossRefGoogle Scholar
  24. Kralj JG, Lis MTW, Schmidt MA, Jensen KF (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78: 5019–5025CrossRefGoogle Scholar
  25. Loutherback K, Puchalla J, Austin RH, Sturm JC (2009) Deterministic microfluidic ratchet. Phys Rev Lett 102:045301CrossRefGoogle Scholar
  26. Magnasco MO (1993) Forced thermal ratchets. Phys Rev Lett 71:1477-1481CrossRefGoogle Scholar
  27. Matthias S, Müller F (2003) Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature 424:53–57CrossRefGoogle Scholar
  28. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208zbMATHCrossRefGoogle Scholar
  29. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, WashingtonzbMATHGoogle Scholar
  30. Reimann P (2002) Brownian motors: noisy transport far from equilibrium. Phys Rep 361:57–265zbMATHCrossRefMathSciNetGoogle Scholar
  31. Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH, BostonGoogle Scholar
  32. Smith KA, Alexeev A, Verberg R, Balazs AC (2006) Designing a simple ratcheting system to sort microcapsules by mechanical properties. Langmuir 22:6739–6742CrossRefGoogle Scholar
  33. Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778-784CrossRefGoogle Scholar
  34. van Oudenaarden A, Boxer SG (1999) Brownian ratchet: molecular separations in liquid bilayers supported on patterned arrays. Science 285:1046-1048CrossRefGoogle Scholar
  35. Vasconcelos TF, Araújo AD, Almeida MP, Andrade JS Jr (2009) Particle transport in rough channels. Int J Mod Phys C 20:1199–1209zbMATHCrossRefGoogle Scholar
  36. Vasconcelos TF, Morais AF, Cisne RLC Jr, Parteli EJR, Andrade JS Jr (2010) Particle separation in a ramified structure. Chem Eng Sci 65:1400–1406CrossRefGoogle Scholar
  37. Wickramasinghe SR, Lin WC, Dandy DS (2001) Separation of different sized particles by inertial migration. Biotech Lett 23:1417–1422CrossRefGoogle Scholar
  38. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Roberto L. C. CisneJr.
    • 1
  • Talita F. Vasconcelos
    • 2
  • Eric J. R. Parteli
    • 3
  • José S. AndradeJr.
    • 1
    • 3
    Email author
  1. 1.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Centro de TecnologiaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Programa de Pós-Graduação em Engenharia QuímicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations