Microfluidics and Nanofluidics

, Volume 10, Issue 2, pp 459–463 | Cite as

Particle flow control by induced dipolar interaction of superparamagnetic microbeads

Short Communication


Magnetic particles diluted in liquid agglomerate in rod-like particle arrays if an external homogeneous magnetic field is applied. This work introduces a method to specifically exploit particle–particle interaction to obtain flow control of magnetic particles without changing the motion state of the carrier liquid. Experiments show the possibility to uncouple the particle flux from the motion state of liquid. We show how this method may be applied to design a microfluidic geometry in which the particle flow in a specific direction is either enabled or suppressed by the relative orientation of the fluid velocity and the external field.


Superparamagnetic beads Dipole–dipole interaction Particle chains Particle suprastructures 



The authors would like to thank the SFB 613 and the FOR 945 for financial support in the framework of the project K3 and the project 3, respectively.


  1. Albon C, Weddemann A, Auge A, Rott K, Hütten A (2009) Tunneling magnetoresistance sensors for high resolutive particle detection. Appl Phys Lett 95:023101CrossRefGoogle Scholar
  2. Auge A, Weddemann A, Wittbracht F, Hütten A (2009) Magnetic ratchet for biomedical applications. Appl Phys Lett 94:183507CrossRefGoogle Scholar
  3. Derks RJS, Frijns AJH, Prins MWJ, Dietzel A (2009) Multibody interactions of actuated magnetic particles used as fluid drivers in microchannels. Microfluid Nanofluid. doi:10.1007/s10404-009-0552-0
  4. Fonnum G, Johansson C, Molteberg A, Mørup S, Aksnes E (2005) Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J Magn Magn Mater 293:41–47CrossRefGoogle Scholar
  5. Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:026502CrossRefGoogle Scholar
  6. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40Google Scholar
  7. Hayes MA, Polson NA, Garcia AA (2001) Active control of dynamic supraparticle structures in microchannels. Langmuir 17:2866–2871CrossRefGoogle Scholar
  8. Jo BH, van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elstomer. J Microelectromech Syst 9:76–81CrossRefGoogle Scholar
  9. Lacharme F, Vandevyver C, Gijs MAM (2009) Magnetic beads retention device for sandwich immunoassay: comparison of off-chip and on-chip antibody incubation. Microfluid Nanofluid 7:479–487CrossRefGoogle Scholar
  10. Lee SH, Van Noort D, Lee JY, Zhang BT, Park TH (2009) Effective mixing in a microfluidic chip using magnetic particles. Lab Chip 9:479–482CrossRefGoogle Scholar
  11. Loureiro J, Ferreira R, Cardoso S, Freitas PP, Germano J, Fermon C, Arrias G, Pannetier Lecoeur M, Rivadulla F, Rivas J (2009) Toward a magnetoresistive chip cytometer: integrated detection of magnetic beads flowing at cm/s velocities in microfluidic channels. Appl Phys Lett 95:034104CrossRefGoogle Scholar
  12. Mikkelsen C, Hansen MF, Bruus H (2005) Theoretical comparison of magnetic and hydrodynamic interactions between magnetically tagged particles in microfluidic systems. J Magn Magn Mater 293:578–583CrossRefGoogle Scholar
  13. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38CrossRefGoogle Scholar
  14. Pekas N, Granger M, Tondra M, Popple A, Porter MD (2005) Magnetic particle diverter in an integrated microfluidic format. J Magn Magn Mater 293:584–588CrossRefGoogle Scholar
  15. Sawetzki T, Rahmouni S, Bechinger C, Marr DWM (2008) In situ assembly of linked geometrically coupled microdevices. Proc Natl Acad Sci USA 105:20141CrossRefGoogle Scholar
  16. Smistrup K, Hansen O, Bruus H, Hansen MF (2005) Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations. J Magn Magn Mater 293:597–604CrossRefGoogle Scholar
  17. Weddemann A, Wittbracht F, Auge A, Hütten A (2009) A hydrodynamic switch: Microfluidic separation system for magnetic beads. Appl Phys Lett 94:173501CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Weddemann
    • 1
  • F. Wittbracht
    • 1
  • A. Auge
    • 1
  • A. Hütten
    • 1
  1. 1.Department of Physics, Thin Films and Physics of NanostructuresBielefeld UniversityBielefeldGermany

Personalised recommendations